Data Mining: Concepts and Techniques

- Chapter 2 -

Chapter 2: Data Preprocessing

- General data characteristics
- Basic data description and exploration
- Measuring data similarity
- Data cleaning
- Data integration and transformation
- Data reduction
- Summary

Types of Data Sets

Record

- Relational records
- Data matrix, e.g., numerical matrix, crosstabs
- Document data: text documents: term-frequency vector
- Transaction data

timeout season coach game score team y y bal lost ⊐ ≦. Document 1 3 0 5 0 2 6 0 2 0 2 Document 2 0 7 0 2 1 0 0 3 0 0 Document 3 2 2 0 0 0 0 1 3 0 1

Bread, Coke, Milk

Coke, **Diaper**, **Milk**

Beer, Coke, Diaper, Milk

Beer, Bread, Diaper, Milk

Beer, Bread

TID

1

2

3

4

5

Items

- Graph
 - World Wide Web
 - Social or information networks
 - Molecular Structures
- Ordered
 - Spatial data: maps
 - Temporal data: time-series
 - Sequential Data: transaction sequences
 - Genetic sequence data

Important Characteristics of Structured Data

- Dimensionality
 - Curse of dimensionality
- Sparsity
 - Only presence counts
- Resolution
 - Patterns depend on the scale
- Similarity
 - Distance measure

Types of Attribute Values

- Nominal
 - E.g., profession, ID numbers, eye color, zip codes
- Ordinal
 - E.g., rankings (e.g., army, professions), grades, height in {tall, medium, short}
- Binary
 - E.g., medical test (positive vs. negative)
- Interval
 - E.g., calendar dates, body temperatures
- Ratio
 - E.g., temperature in Kelvin, length, time, counts

Discrete vs. Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
- E.g., zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes
- Continuous Attribute
 - Has real numbers as attribute values
 - Examples: temperature, height, or weight
 - Practically, real values can only be measured and represented using a finite number of digits
 - Continuous attributes are typically represented as floating-point variables

Chapter 2: Data Preprocessing

- General data characteristics
- Basic data description and exploration
- Measuring data similarity
- Data cleaning
- Data integration and transformation
- Data reduction
- Summary

Mining Data Descriptive Characteristics

- Motivation
 - To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
 - median, max, min, quantiles, outliers, variance, etc.
- Numerical dimensions correspond to sorted intervals
 - Data dispersion: analyzed with multiple granularities of precision
 - Boxplot or quantile analysis on sorted intervals
- Dispersion analysis on computed measures
 - Folding measures into numerical dimensions
 - Boxplot or quantile analysis on the transformed cube

Measuring the Central Tendency

- <u>Mean (algebraic measure) (sample vs. population):</u> $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ $\mu = \frac{\sum x_i}{N}$
 - Weighted arithmetic mean:
 - Trimmed mean: chopping extreme values
- Median: A holistic measure
 - Middle value if odd number of values, or average of the middle two values otherwise
 Estimated by interpolation (for grouped data): $median = L_1 + (\frac{N/2 - (\sum freq)l}{freq_{median}}) width$ values otherwise

 $\overline{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$

- Mode
 - Value that occurs most frequently in the data
 - Unimodal, bimodal, trimodal
 - Empirical formula: $mean mode = 3 \times (mean median)$

 Median, mean and mode of symmetric, positively and negatively skewed data

Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
 - Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
 - Inter-quartile range: $IQR = Q_3 Q_1$
 - Five number summary: min, Q₁, M, Q₃, max
 - Boxplot: ends of the box are the quartiles, median is marked, whiskers, and plot outlier individually
 - Outlier: usually, a value higher/lower than 1.5 x IQR
- Variance and standard deviation (*sample: s, population: \sigma*)
 - Variance: (algebraic, scalable computation)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} (\sum_{i=1}^{n} x_{i})^{2} \right] \qquad \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

Standard deviation s (or σ) is the square root of variance s^2 (or σ^2)

Boxplot Analysis

Five-number summary of a distribution:

Minimum, Q1, M, Q3, Maximum

- Boxplot
 - Data is represented with a box
 - The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
 - The median is marked by a line within the box
 - Whiskers: two lines outside the box extend to Minimum and Maximum

Visualization of Data Dispersion: 3-D Boxplots

Properties of Normal Distribution Curve

- The normal (distribution) curve
 - From μ–σ to μ+σ: contains about 68% of the measurements (μ: mean, σ: standard deviation)
 - From μ -2 σ to μ +2 σ : contains about 95% of it
 - From μ -3 σ to μ +3 σ : contains about 99.7% of it

Graphic Displays of Basic Statistical Descriptions

- Boxplot: graphic display of five-number summary
- Histogram: x-axis are values, y-axis repres. frequencies
- Quantile plot: each value x_i is paired with f_i indicating that approximately 100 f_i % of data are $\leq x_i$
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane
- Loess (local regression) curve: add a smooth curve to a scatter plot to provide better perception of the pattern of dependence

Histogram Analysis

- Graph displays of basic statistical class descriptions
 - Frequency histograms
 - A univariate graphical method
 - Consists of a set of rectangles that reflect the counts or frequencies of the classes present in the given data

Histograms Often Tells More than Boxplots

- The two histograms shown in the left may have the same boxplot representation
 - The same values for: min, Q1, median, Q3, max
- But they have rather different data distributions

Quantile Plot

- Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)
- Plots quantile information
 - For a data x_i data sorted in increasing order, f_i indicates that approximately 100 f_i% of the data are below or equal to the value x_i

Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- Allows the user to view whether there is a shift in going from one distribution to another

Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

Loess Curve

- Adds a smooth curve to a scatter plot in order to provide better perception of the pattern of dependence
- Loess curve is fitted by setting two parameters: a smoothing parameter, and the degree of the polynomials that are fitted by the regression

Positively and Negatively Correlated Data

- The left half fragment is positively correlated
- The right half is negative correlated

ERROR: invalidrestore OFFENDING COMMAND: restore

STACK:

-savelevel--savelevel-