Chapter 6. Classification and Prediction

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Classification by back propagation

- Lazy learners (or learning from your neighbors)
- Frequent-pattern-based classification
- Other classification methods
- Prediction
- Accuracy and error measures

Supervised vs. Unsupervised Learning

- Supervised learning (classification)
 - Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
 - New data is classified based on the training set
- Unsupervised learning (clustering)
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Classification vs. Prediction

Classification

- predicts categorical class labels (discrete or nominal)
- classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data
- Prediction
 - models continuous-valued functions, i.e., predicts unknown or missing values
- Typical applications
 - Credit/loan approval:
 - Medical diagnosis: if a tumor is cancerous or benign
 - Fraud detection: if a transaction is fraudulent
 - Web page categorization: which category it is

Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction is training set
 - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set, otherwise over-fitting will occur
 - If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known

Process (1): Model Construction

Process (2): Using the Model in Prediction

Issues: Data Preparation

- Data cleaning
 - Preprocess data in order to reduce noise and handle missing values
- Relevance analysis (feature selection)
 - Remove the irrelevant or redundant attributes
- Data transformation
 - Generalize and/or normalize data

Issues: Evaluating Classification Methods

- Accuracy
 - classifier accuracy: predicting class label
 - predictor accuracy: guessing value of predicted attributes
- Speed
 - time to construct the model (training time)
 - time to use the model (classification/prediction time)
- Robustness: handling noise and missing values
- Scalability: efficiency in disk-resident databases
- Interpretability
 - understanding and insight provided by the model
- Other measures, e.g., goodness of rules, such as decision tree size or compactness of classification rules

Decision Tree Induction: Training Dataset

This follows an example of Quinlan's ID3 (Playing Tennis)

age	income	student	credit_rating	buys_computer	
<=30	high	no	fair	no	
<=30	high	no	excellent	no	
3140	high	no	fair	yes	
>40	medium	no	fair	yes	
>40	low	yes	fair	yes	
>40	low	yes	excellent	no	
3140	low	yes	excellent	yes	
<=30	medium	no	fair	no	
<=30	low	yes	fair	yes	
>40	medium	yes	fair	yes	
<=30	medium	yes	excellent	yes	
3140	medium	no	excellent	yes	
3140	high	yes	fair	yes	
>40	medium	no	excellent	no	

Output: A Decision Tree for "*buys_computer"*

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i, estimated by |C_{i, D}|/|D|
- Expected information (entropy) needed to classify a tuple in D: $Info(D) = -\sum_{n=1}^{m} n \log_{n}(n)$

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

- Information needed (after using A to split D into v partitions) to classify D: $Info_A(D) = \sum_{i=1}^{\nu} \frac{|D_j|}{|D|} \times I(D_j)$
- Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Attribute Selection: Information Gain

Class P: buys_computer = "yes" $Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$								
Class N: buys_computer = "no" 14 14								
$Info(D) = I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{5}{14}) = 0.940 + \frac{5}{14}I(3,2) = 0.694$								
	age	p) _i	n _i	I((p _i , n _i)	-	$\frac{5}{1}I(2,3)$ means "age <=30" has 5
	<=30		2	3	0.9	971		4 out of 14 complex with 2 vos'es
			1	0				Out of 14 samples, with 2 yes es
	314	-0 2	ł	0	U	and 3 no's Hence		and 3 no's. Hence
	>40	3	3	2	0.9	971		
age	income	student	cr	edit_rat	ing	buys_com	outer	$Gain(age) = Info(D) - Info_{age}(D) = 0.246$
<=30	high	no	fair			no		
<=30	high	no	exc	ellent		no		
3140	high	no	fair			yes		Similarly,
>40	medium	no	fair			yes		
>40	low	yes	tair		yes		C : (:) 0.020	
31 40	low	ves	excellent		Ves		Gain(income) = 0.029	
<=30	medium	no	fair		no		α , $($, $)$, α , ε , ε	
<=30	low	yes	fair		yes		Gain(student) = 0.151	
>40	medium	yes	fair			yes		
<=30	medium	yes	exc	ellent		yes		Gain(credit rating) = 0.048
3140	medium	no	exc	ellent		yes		
3140	high	yes	fair			yes		ncents and Techniques 12
>40	medium	no	exc	ellent		no		

Computing Information-Gain for Continuous-Value Attributes

- Let attribute A be a continuous-valued attribute
- Must determine the *best split point* for A
 - Sort the value A in increasing order
 - Typically, the midpoint between each pair of adjacent values is considered as a possible *split point*
 - $(a_i + a_{i+1})/2$ is the midpoint between the values of a_i and a_{i+1}
 - The point with the *minimum expected information* requirement for A is selected as the split-point for A
- Split:
 - D1 is the set of tuples in D satisfying A ≤ split-point, and
 D2 is the set of tuples in D satisfying A > split-point

Gain Ratio for Attribute Selection (C4.5)

- Information gain measure is biased towards attributes with a large number of values
- C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to information gain)

$$SplitInfo_{A}(D) = -\sum_{j=1}^{\nu} \frac{|D_{j}|}{|D|} \times \log_{2}(\frac{|D_{j}|}{|D|})$$

GainRatio(A) = Gain(A)/SplitInfo(A)

- Ex. SplitInfo_A(D) = $-\frac{4}{14} \times \log_2(\frac{4}{14}) \frac{6}{14} \times \log_2(\frac{6}{14}) \frac{4}{14} \times \log_2(\frac{4}{14}) = 0.926$
 - gain_ratio(income) = 0.029/0.926 = 0.031
- The attribute with the maximum gain ratio is selected as the splitting attribute

Gini index (CART, IBM IntelligentMiner)

• If a data set *D* contains examples from *n* classes, gini index, *gini(D)* is defined as $n = \frac{n}{2} - \frac{2}{2}$

gini (D) =
$$1 - \sum_{j=1}^{n} p_{j}^{2}$$

where p_j is the relative frequency of class j in D

• If a data set *D* is split on A into two subsets D_1 and D_2 , the *gini* index *gini*(*D*) is defined as $|D_1| = 1 + (D_2) + ($

$$gini_{A}(D) = \frac{|D_{1}|}{|D|}gini(D_{1}) + \frac{|D_{2}|}{|D|}gini(D_{2})$$

• Reduction in Impurity:

$$\Delta gini(A) = gini(D) - gini_A(D)$$

 The attribute provides the smallest gini_{split}(D) (or the largest reduction in impurity) is chosen to split the node (need to enumerate all the possible splitting points for each attribute)

Gini index (CART, IBM IntelligentMiner)

Ex. D has 9 tuples in buys_computer = "yes" and 5 in "no"

$$gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$$

• Suppose the attribute income partitions D into 10 in D₁: {low, medium} and 4 in D₂ $gini_{income \in \{low, medium\}}(D) = \left(\frac{10}{14}\right)Gini(D_1) + \left(\frac{4}{14}\right)Gini(D_1)$ $= \frac{10}{14}(1 - (\frac{6}{10})^2 - (\frac{4}{10})^2) + \frac{4}{14}(1 - (\frac{1}{4})^2 - (\frac{3}{4})^2)$ = 0.450 $= Gini_{income \in \{high\}}(D)$

but $gini_{\text{medium,high}}$ is 0.30 and thus the best since it is the lowest

- All attributes are assumed continuous-valued
- May need other tools, e.g., clustering, to get the possible split values
- Can be modified for categorical attributes

Comparing Attribute Selection Measures

- The three measures, in general, return good results but
 - Information gain:
 - biased towards multivalued attributes
 - Gain ratio:
 - tends to prefer unbalanced splits in which one partition is much smaller than the others
 - Gini index:
 - biased to multivalued attributes
 - has difficulty when # of classes is large
 - tends to favor tests that result in equal-sized partitions and purity in both partitions

Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

Classification in Large Databases

- Classification—a classical problem extensively studied by statisticians and machine learning researchers
- Scalability: Classifying data sets with millions of examples and hundreds of attributes with reasonable speed
- Why decision tree induction in data mining?
 - relatively faster learning speed (than other classification methods)
 - convertible to simple and easy to understand classification rules
 - can use SQL queries for accessing databases
 - comparable classification accuracy with other methods

Classification by Backpropagation

- Backpropagation: A **neural network** learning algorithm
- Started by psychologists and neurobiologists to develop and test computational analogues of neurons
- A neural network: A set of connected input/output units where each connection has a **weight** associated with it
- During the learning phase, the network learns by adjusting the weights so as to be able to predict the correct class label of the input tuples
- Also referred to as connectionist learning due to the connections between units

Neural Network as a Classifier

Weakness

- Long training time
- Require a number of parameters typically best determined empirically, e.g., the network topology or "structure."
- Poor interpretability: Difficult to interpret the symbolic meaning behind the learned weights and of "hidden units" in the network

Strength

- High tolerance to noisy data
- Ability to classify untrained patterns
- Well-suited for continuous-valued inputs and outputs
- Successful on a wide array of real-world data
- Algorithms are inherently parallel
- Techniques have recently been developed for the extraction of rules from trained neural networks

A Neuron (= a perceptron)

 The *n*-dimensional input vector x is mapped into variable y by means of the scalar product and a nonlinear function mapping

A Multi-Layer Feed-Forward Neural Network

How A Multi-Layer Neural Network Works?

- The **inputs** to the network correspond to the attributes measured for each training tuple
- Inputs are fed simultaneously into the units making up the input layer
- They are then weighted and fed simultaneously to a **hidden layer**
- The number of hidden layers is arbitrary, although usually only one
- The weighted outputs of the last hidden layer are input to units making up the **output layer**, which emits the network's prediction
- The network is **feed-forward** in that none of the weights cycles back to an input unit or to an output unit of a previous layer
- From a statistical point of view, networks perform nonlinear regression: Given enough hidden units and enough training samples, they can closely approximate any function

Defining a Network Topology

- First decide the network topology: # of units in the input layer, # of hidden layers (if > 1), # of units in each hidden layer, and # of units in the output layer
- Normalizing the input values for each attribute measured in the training tuples to [0.0—1.0]
- One **input** unit per domain value, each initialized to 0
- Output, if for classification and more than two classes, one output unit per class is used
- Once a network has been trained and its accuracy is unacceptable, repeat the training process with a *different* network topology or a *different set of initial weights*

Backpropagation

- Iteratively process a set of training tuples & compare the network's prediction with the actual known target value
- For each training tuple, the weights are modified to minimize the mean squared error between the network's prediction and the actual target value
- Modifications are made in the "backwards" direction: from the output layer, through each hidden layer down to the first hidden layer, hence "backpropagation"
- Steps
 - Initialize weights (to small random #s) and biases in the network
 - Propagate the inputs forward (by applying activation function)
 - Backpropagate the error (by updating weights and biases)
 - Terminating condition (when error is very small, etc.)

Backpropagation and Interpretability

- Efficiency of backpropagation: Each epoch (one interation through the training set) takes O(|D| * w), with |D| tuples and w weights, but # of epochs can be exponential to n, the number of inputs, in the worst case
- Rule extraction from networks: network pruning
 - Simplify the network structure by removing weighted links that have the least effect on the trained network
 - Then perform link, unit, or activation value clustering
 - The set of input and activation values are studied to derive rules describing the relationship between the input and hidden unit layers
- Sensitivity analysis: assess the impact that a given input variable has on a network output. The knowledge gained from this analysis can be represented in rules

Lazy vs. Eager Learning

- Lazy vs. eager learning
 - Lazy learning (e.g., instance-based learning): Simply stores training data (or only minor processing) and waits until it is given a test tuple
 - Eager learning (the above discussed methods): Given a set of training set, constructs a classification model before receiving new (e.g., test) data to classify
- Lazy: less time in training but more time in predicting
- Accuracy
 - Lazy method effectively uses a richer hypothesis space since it uses many local linear functions to form its implicit global approximation to the target function
 - Eager: must commit to a single hypothesis that covers the entire instance space

Lazy Learner: Instance-Based Methods

- Instance-based learning:
 - Store training examples and delay the processing ("lazy evaluation") until a new instance must be classified
- Typical approaches
 - <u>k-nearest neighbor approach</u>
 - Instances represented as points in a Euclidean space.
 - Locally weighted regression
 - Constructs local approximation
 - Case-based reasoning
 - Uses symbolic representations and knowledgebased inference

The *k*-Nearest Neighbor Algorithm

- All instances correspond to points in the n-D space
- The nearest neighbor are defined in terms of Euclidean distance, dist(X₁, X₂)
- Target function could be discrete- or real- valued
- For discrete-valued, k-NN returns the most common value among the k training examples nearest to X_q
- Vonoroi diagram: the decision surface induced by 1-NN for a typical set of training examples

Discussion on the k-NN Algorithm

- k-NN for real-valued prediction for a given unknown tuple
 - Returns the mean values of the k nearest neighbors
- Distance-weighted nearest neighbor algorithm
 - Weight the contribution of each of the k neighbors according to their distance to the query x_q $w \equiv \frac{1}{d(x_q, x_i)^2}$
 - Give greater weight to closer neighbors
- Robust to noisy data by averaging k-nearest neighbors
- Curse of dimensionality: distance between neighbors could be dominated by irrelevant attributes
 - To overcome it, axes stretch or elimination of the least relevant attributes

Genetic Algorithms (GA)

- Genetic Algorithm: based on an analogy to biological evolution
- An initial **population** is created consisting of randomly generated rules
 - Each rule is represented by a string of bits
 - E.g., if A_1 and $\neg A_2$ then C_2 can be encoded as 100
 - If an attribute has k > 2 values, k bits can be used
- Based on the notion of survival of the **fittest**, a new population is formed to consist of the fittest rules and their offsprings
- The fitness of a rule is represented by its *classification accuracy* on a set of training examples
- Offsprings are generated by *crossover* and *mutation*
- The process continues until a population P evolves when each rule in P satisfies a prespecified threshold
- Slow but easily parallelizable

What Is Prediction?

- (Numerical) prediction is similar to classification
 - construct a model
 - use model to predict continuous or ordered value for a given input
- Prediction is different from classification
 - Classification refers to predict categorical class label
 - Prediction models continuous-valued functions
- Major method for prediction: regression
 - model the relationship between one or more *independent* or predictor variables and a *dependent* or response variable
- Regression analysis
 - Linear and multiple regression
 - Non-linear regression
 - Other regression methods: generalized linear model, Poisson regression, log-linear models, regression trees

Linear Regression

 <u>Linear regression</u>: involves a response variable y and a single predictor variable x

 $y = w_0 + w_1 x$

where w_0 (y-intercept) and w_1 (slope) are regression coefficients

Method of least squares: estimates the best-fitting straight line

$$w_{1} = \frac{\sum_{i=1}^{|D|} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{|D|} (x_{i} - \bar{x})^{2}} \qquad w_{0} = \bar{y} - w_{1}\bar{x}$$

• <u>Multiple linear regression</u>: involves more than one predictor variable

- Training data is of the form (X₁, y₁), (X₂, y₂),..., (X_{|D|}, y_{|D|})
- Ex. For 2-D data, we may have: $y = w_0 + w_1 x_1 + w_2 x_2$
- Solvable by extension of least square method or using SAS, S-Plus
- Many nonlinear functions can be transformed into the above

Nonlinear Regression

- Some nonlinear models can be modeled by a polynomial function
- A polynomial regression model can be transformed into linear regression model. For example,

 $y = w_0 + w_1 x + w_2 x^2 + w_3 x^3$

convertible to linear with new variables: $x_2 = x^2$, $x_3 = x^3$

 $y = w_0 + w_1 x + w_2 x_2 + w_3 x_3$

- Other functions, such as power function, can also be transformed to linear model
- Some models are intractable nonlinear (e.g., sum of exponential terms)
 - possible to obtain least square estimates through extensive calculation on more complex formulae

October 25, 2013

Other Regression-Based Models

- <u>Generalized linear model</u>:
 - Foundation on which linear regression can be applied to modeling categorical response variables
 - Variance of y is a function of the mean value of y, not a constant
 - Logistic regression: models the prob. of some event occurring as a linear function of a set of predictor variables
 - <u>Poisson regression</u>: models the data that exhibit a Poisson distribution
- Log-linear models: (for categorical data)
 - Approximate discrete multidimensional prob. distributions
 - Also useful for data compression and smoothing
- Regression trees and model trees
 - Trees to predict continuous values rather than class labels

Prediction: Numerical Data

<mark>∰ dbminer</mark> Eile <u>E</u> dit <u>Q</u> uery ⊻iew Window <u>H</u>	elp		_ 8 > _ 8 >
Dim: Sale_Price	: level1		
Relevance A	nalysis	Sale_Price Channel Cost_of_Goods_Sold Advertising_Cost Average_Sales_Area	
		Profit:	
0.43	0.45		
0.30	0.35	0.9	
0.15 0.10 0.05	0.20	0.7	
are a start	0.05	0.6	_
	3 6	0.5	
# Predictive Name Sale_Price 1 1 (-4950.000 ~ 91950.000)	Value	0.3	
2 Channel		0.2	_
Advertising_Cost 4 (0.000 ~ 1715.000) Average Sales Area		0.1	
5 (1130.000 ~ 4230.000)		4950 4740 14430 14430 24120 33810 43500 53190 53190 53190 53190 82260	
For Help, press F1			

October 25, 2013

Prediction: Categorical Data

Classifier Accuracy Measures

Real class\Predicted class	C ₁	~C ₁	
C ₁	True positive	False negative	
~C ₁	False positive	True negative	

Real class\Predicted class	buy_computer = yes	buy_computer = no	total	recognition(%)
buy_computer = yes	6954	46	7000	99.34
buy_computer = no	412	2588	3000	86.27
total	7366	2634	10000	95.52

- Accuracy of a classifier M, acc(M): percentage of test set tuples that are correctly classified by the model M
 - Error rate (misclassification rate) of M = 1 acc(M)
 - Given *m* classes, *CM_{i,j}*, an entry in a **confusion matrix**, indicates # of tuples in class *i* that are labeled by the classifier as class *j*

Alternative accuracy measures (e.g., for cancer diagnosis)

sensitivity = t-pos/pos/* true positive recognition rate */specificity = t-neg/neg/* true negative recognition rate */

precision = t-pos/(t-pos + f-pos)

accuracy = sensitivity * pos/(pos + neg) + specificity * neg/(pos + neg)

This model can also be used for cost-benefit analysis

Predictor Error Measures

- Measure predictor accuracy: measure how far off the predicted value is from the actual known value
- **Loss function**: measures the error betw. y_i and the predicted value y'
 - Absolute error: $|y_i y'_i|$
 - Squared error: $(y_i y_i')^2$
- Test error (generalization error): the average loss over the test set

 - Mean absolute error: ^d/_{i=1} | y_i y_i'|
 ^d/_{i=1} Mean squared error: ^d/_{i=1} (y_i y_i')²
 ^d/_{i=1}
 ^d/_{i=1} Relative squared error: ^d/_{i=1} (y_i y_i')²
 ^d/_{i=1}
 ^d/_{i=1}

The mean squared-error exaggerates the presence of outliers Popularly use (square) root mean-square error, similarly, root relative squared error

Evaluating the Accuracy of a Classifier or Predictor (I)

- Holdout method
 - Given data is randomly partitioned into two independent sets
 - Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation
 - Random sampling: a variation of holdout
 - Repeat holdout k times, accuracy = avg. of the accuracies obtained
- <u>Cross-validation</u> (*k*-fold, where k = 10 is most popular)
 - Randomly partition the data into k mutually exclusive subsets, each approximately equal size
 - At *i*-th iteration, use D_i as test set and others as training set
 - <u>Leave-one-out</u>: k folds where k = # of tuples, for small sized data
 - <u>Stratified cross-validation</u>: folds are stratified so that class dist. in each fold is approx. the same as that in the initial data

Model Selection: ROC Curves

- ROC (Receiver Operating Characteristics) curves: for visual comparison of classification models
- Originated from signal detection theory
- Shows the trade-off between the true positive rate and the false positive rate
- The area under the ROC curve is a measure of the accuracy of the model
- Rank the test tuples in decreasing order: the one that is most likely to belong to the positive class appears at the top of the list
- The closer to the diagonal line (i.e., the closer the area is to 0.5), the less accurate is the model

- Vertical axis represents the true positive rate
- Horizontal axis rep. the false positive rate
 - The plot also shows a diagonal line
 - A model with perfect accuracy will have an area of 1.0