2.6.1 Slater Rules for determining effective nuclear charge

Slater gave a set of empirical rules for calculating the effective nuclear charge $\left(Z_{c t f}\right)$ experienced by electrons in different orbitals. As stated above, the $Z_{e f f}$ acting on a given electron is calculated by subtracting the screening constant (S) from the atomic number Z (nuclear charge).

That is: $Z_{e f f}=Z-S$
The 'Slater rules' for calculating screening on shielding constant (S) are as follows:
(1) The electronic configuration of the element is first written in the following order and groupings: $(1 s) ;(2 s, 2 p) ;(3 s, 3 p) ;(3 d) ;(4 s, 4 p) ;(4 d) ;(4 f) ;(5 s, 5 p) ;(5 d) ;(5 f)$ and so on.
(2) For an electron considered in a group of s, p electrons the shielding constant (S) is the sum of the following contributions:
(a) No contribution for electrons in groups beyond the one considered.
(b) An amount of 0.35 for each electron in the group considered (except in $1 s$ group where 0.30 is used instead of 0.35).
(c) An amount of 0.85 for each electron in the next inner shell $(n-1)$.
(d) An amount of 1.00 for each of all other inner shell electrons.
(3) For an electron considered in d or f group, rules $2 a$ and $2 b$ apply as such; however rules $2 c$ and $2 d$ are replaced with the rule that all other electrons lying to the left of d or f group contribute 1.00 each.
Example 11. Calculate $Z_{\text {eff }}$ faced by a $3 s$ or $3 p$ electron in phosphorus atom ($Z=15,1 \mathrm{~s}^{2}$ $2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$)

Solution. Group configuration $=\left(1 s^{2}\right)\left(2 s^{2}, 2 p^{6}\right)\left(3 s^{2}, 3 p^{3}\right)$. Four other electrons in the group $\left(3 s^{2}, 3 p^{3}\right)$ contribute 4×0.35 and next inner shell contributes 8×0.85 and then the next 2×1.

For a $3 s$ or $3 p$ electron, $S=(2 \times 1.00)+(8 \times 0.85)+(4 \times 0.35)$

$$
\begin{aligned}
\quad S & =2.00+6.80+1.40=10.20 \\
Z_{e f f} & =15-10.20=4.80
\end{aligned}
$$

Example 12. Calculate $Z_{\text {eff }}$ experienced by a $2 p$ electron in oxygen atom

$$
Z\left(8,1 s^{2}, 2 s^{2} 2 p^{4}\right)
$$

Solution. Group configuration $=\left(1 s^{2}\right) ;\left(2 s^{2} 2 p^{4}\right)$
There are 5 other electrons in group $\left(2 s^{2}, 2 p^{4}\right)$ under consideration which contribute 5×0.35 Dowards S. Next inner shell contributes 2×0.85. Thus for a $2 p$ electron

$$
\begin{aligned}
S & =(2 \times 0.85)+5 \times(0.35)=3.45 \\
\mathrm{Z}_{e f f} & =(8-3.45)=4.55
\end{aligned}
$$

Example 13. Calculate $Z_{\text {eff }}$ experienced by (i) $5 s$ electron (ii) $4 d$ electron in Ag atom (Z $=47,1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{6}, 3 d^{10}, 4 s^{2}, 4 p^{6}, 4 d^{10}, 5 s^{1}$).

Solution. Group configuration $=\left(1 s^{2}\right),\left(2 s^{2}, 2 p^{6}\right) ;\left(3 s^{2}, 3 p^{6}\right) ;\left(3 d^{10}\right)\left(4 s^{2}, 4 p^{6}\right),\left(4 d^{10}\right)\left(5 s^{1}\right)$
(i) For 5 s electron,

$$
\begin{aligned}
S & =(28 \times 1.00)+(18 \times 0.85)+(0 \times 0.35) \\
& =43.30 \\
Z_{\text {efff }} & =47-43.30=3.70 \\
S & =(36 \times 1.00)+(9 \times 0.35)+0 \\
& =39.15 \\
Z_{\text {eff }} & =47-39.15=7.85
\end{aligned}
$$

(ii) For 4d electron,

