
K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 1

 Database Management System

Introduction

Concept of Database

Database: It is a collection of interrelated

data files/tables.

Table: It is collection of similar records.

Record: It is collection of meaningful

attribute values.

Attribute: Property of an entity.

Entity: Areal world object which should be

distinguished from others.

Table 1. Sample table(relation/entity set)

Sid Sname Marks

S1 Ram 30

S2 Mohan 40

S3 Sita 50

S4 Ravan 0

The table consists of rows and columns.

Rows are called records or tuple or entity.

Column is called attribute or field.

DBMS Database Management system is a

software package which enables user to

create and maintain a database .

The DBMS is hence a general-purpose

software system that facilitates the

process of defining, constructing and

manipulating databases for various

applications.

E.g. Oracle, Ingress, Sybase, Dbase 3+,

Foxbase, Foxpro, Ms access, Database,

Dataflex, SQL Server etc.

Data, information and knowledge

Data

Data is/are the facts of the World. For

example, take yourself. You may be 5ft

tall, have brown hair and blue eyes. All of

this is “data”. You have brown hair

whether this is written down somewhere

or not.

In many ways, data can be thought of as a

description of the World. We can perceive

this data with our senses, and then the

brain can process this.

Human beings have used data as long as

we’ve existed to form knowledge of the

world.

Until we started using information, all we

could use was data directly. If you wanted

to know how tall I was, you would have to

come and look at me. Our knowledge was

limited by our direct experiences.

Information

Information allows us to expand our

knowledge beyond the range of our

senses. We can capture data in

information, then move it about so that

other people can access it at different

times.

Here is a simple analogy for you.

If I take a picture of you, the photograph is

information. But what you look like is

data.

I can move the photo of you around, send

it to other people via e-mail etc. However,

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 2

I’m not actually moving you around – or

what you look like. I’m simply allowing

other people who can’t directly see you

from where they are to know what you

look like. If I lose or destroy the photo,

this doesn’t change how you look.

CHARACTERISTICS OF VALUABLE

INFORMATION.

In order for information to be valuable it

must have the following characteristics, as

adapted from Ralph M. Stair's book,

Principles of Information Systems:

Accurate. Accurate information is free

from error.

Complete. Complete information contains

all of the important facts.

Economical. Information should be

relatively inexpensive to produce.

Flexible. Flexible information can be used

for a variety of purposes, not just one.

Reliable. Reliable information is

dependable information.

Relevant. Relevant information is

important to the decision-maker.

Simple. Information should be simple to

find and understand.

Timely. Timely information is readily

available when needed.

Verifiable. Verifiable information can be

checked to make sure it is accurate.

In Brief

Data: Facts, a description of the World

Information: Captured Data and

Knowledge

Knowledge: Our personal map/model of

the World

Data processing Vs data

management

Data processing

Data processing refers to the process of

performing specific operations on a set of

data or a database. A database is an

organized collection of facts and

information, such as records on

employees, inventory, customers, and

potential customers. As these examples

suggest, numerous forms of data

processing exist and serve diverse

applications in the business setting.

Data processing primarily is performed on

information systems, a broad concept that

encompasses computer systems and

related devices. At its core, an information

system consists of input, processing, and

output. In addition, an information system

provides for feedback from output to

input. The input mechanism (such as a

keyboard, scanner, microphone, or

camera) gathers and captures raw data

and can be either manual or automated.

Processing, which also can be

accomplished manually or automatically,

involves transforming the data into useful

outputs. This can involve making

comparisons, taking alternative actions,

and storing data for future use. Output

typically takes the form of reports and

documents that are used by managers.

Feedback is utilized to make necessary

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 3

adjustments to the input and processing

stages of the information system.

The processing stage is where

management typically exerts the greatest

control over data. It also is the point at

which management can derive the most

value from data, assuming that powerful

processing tools are available to obtain

the intended results. The most frequent

processing procedures available to

management are basic activities such as

segregating numbers into relevant groups,

aggregating them, taking ratios, plotting,

and making tables. The goal of these

processing activities is to turn a vast

collection of facts into meaningful nuggets

of information that can then be used for

informed decision making, corporate

strategy, and other managerial functions.

Data Management

The official definition provided by DAMA

International, the professional

organization for those in the data

management profession, is: "Data

Resource Management is the

development and execution of

architectures, policies, practices and

procedures that properly manage the full

data lifecycle needs of an enterprise."

{{DAMA International}} This definition is

fairly broad and encompasses a number of

professions which may not have direct

technical contact with lower-level aspects

of data management, such as relational

database management.

Alternatively, the definition provided in

the DAMA Data Management Body of

Knowledge (DAMA-DMBOK) is: "Data

management is the development,

execution and supervision of plans,

policies, programs and practices that

control, protect, deliver and enhance the

value of data and information assets."

The concept of "Data Management" arose

in the 1980s as technology moved from

sequential processing (first cards, then

tape) to random access processing. Since

it was now technically possible to store a

single fact in a single place and access that

using random access disk, those

suggesting that "Data Management" was

more important than "Process

Management" used arguments such as "a

customer's home address is stored in 75

(or some other large number) places in

our computer systems." During this

period, random access processing was not

competitively fast, so those suggesting

"Process Management" was more

important than "Data Management" used

batch processing time as their primary

argument. As applications moved more

and more into real-time, interactive

applications, it became obvious to most

practitioners that both management

processes were important. If the data was

not well defined, the data would be mis-

used in applications. If the process wasn't

well defined, it was impossible to meet

user needs.

Purpose of Database system

Database System=Database + DBMS

In early days, database applications ware built

on top of file system.

Following are the drawback of using file

system to store data which can be overcome

by database system.

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 4

� Data redundancy and inconsistency.

� Duplication of same information at

several places are possible.

� All copies may not be updated

properly.

� Difficulty in accessing data

� May have to write a new application

program to satisfy an unusual

request.

� E.g. Find all students with same

marks.

� could generate this data manually,

but a tedious job.

� Data Isolation

� Data in different files.

� Data in different formats.

� Difficult to write new application

programs.

� Multiple users

� Want concurrency for faster response

time

� Need protection for concurrent

updates.

� E.g. two customers depositing funds

in the same account at the same time.

� Security problems

� Every user of the system should be

able to access only the data they are

permitted to see.

� Difficult to inforce this with

application programs.

� Integrity problems

� Data may be required to satisfy

constraints.

� E.g. No account balance should be

below Rs 500.

� Again difficult to enforce or to change

constraints with the file processing

approach.

� Atomicity of updates

� Failures may leave database in an

inconsistent state with partial update

carried out.

� E.g. Transfer of funds from one

account to another should either

complete or not happen at all.

Functionality of a database system

� Specifying the database structure

� data definition language

� Manipulation of database

� Query processing and query

optimisation.

� Integrity enforcement

� integrity constraints

� Concurrent control

� multiple user environment.

� Crash recovery

� Security and authorization.

Types of DBMS

Several criteria can be used to classify DBMSs.

Following are the criteria and types of DBMS

according to them.

1. Data Model

1.1. Relational model

1.2. Object data model

1.3. Object-relational model

1.4. Network model

1.5. Hierarchical model

Many current DBMSs use the relational data

model or object data model. Many legacy

applications still run on database systems

based on hierarchical and network data

models. Relational DBMSs are extending their

models to incorporate object based concepts

and other capabilities. These systems are

referred to as object-relational systems.

2. Number of users

2.1. Single user systems

2.2. Multiuser systems

3. Number of sites

3.1. Centralized DBMS

Data is stored at a single computer site.

3.2. Distributed DBMS

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 5

can have the actual database and

DBMS software distributed over

many sites, connected by a computer

network.

3.3. Federated DBMS

Participating database and DBMSs

are heterogeneous. It’s a

combination of centralized and

distributed DBMS.

4. Cost

5. Type of access path

6. Purpose

6.1. General-purpose DBMS

6.2. Special-purpose DBMS

E.g. DBMS for airline reservation system.

DBMS Architecture

Database systems are usually partitioned into

two or three parts as in fig 1.

Figure 1 two-tier and three-tier architecture

In a two-tier architecture, the application is

partitioned into a component that resides at

the client machine, which invokes database

system functionality at the server machine

through query language statements.

In a three-tier architecture, the client machine

acts as merely a front end and does not any

direct database calls. instead , the client end

communicates with an application server,

usually through a forms interface. The

application server in turn communicates with

a database system to access data. The

business logic of the application, which says

what actions to carry out under what

conditions, is embedded in the application

server, instead of being distributed across

multiple client. Three-tier applications are

more appropriate for large applications and

for the applications that run on World Wide

Web.

Views of Data

A major purpose of a database system is to

provide users with an abstract view of data.

That is the system hides certain detail of how

the data are stored and maintained.

Figure 2 three levels of data abstraction or views

Physical level: How the data are actually

stored.

Logical level: What data are stored in

database and what relationship exist among

those data. Thus, the logical level describes

the entire database in terms of small number

of relatively simple structures.

View level: describes only a part of entire

database. The system may provide many

views of the same database.

Data Independency

The ability to modify a scheme definition in

one level without affecting a scheme

definition in a higher level is called data

independence.

There are two kinds of data independency

1. Physical data independence

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 6

� The ability to modify the physical

scheme without causing logical

schema to be modified.

� Modifications at this level are usually

to improve performance.

2. Logical data independence

� The ability to modify conceptual

schema without causing any

modification on view level.

� Usually done when logical structure of

database is altered.

Data Models

These are the model that determines the

logical structure of a database and

fundamentally determines in which manner

data can be stored, organized, and

manipulated. Most popular data model for

database design is relational model.

Following are some common data models.

1. Flat file model

2. Network data model

3. Hierarchical data model

4. Entity Relationship model

5. Relational data model

6. Object data model

7. Object-Relational data model

Flat file model: The database is a collection of

flat files. Data are stored in these files where

didn’t think about relationships. These

relationships ware present but they were not

named or maintained.

Network data model: The network database

is a collection of set occurrences. The two

basic data structuring concept are records and

sets. A set occurrence will have one owner

record and many member records.

Hierarchical model: The hierarchical database

is a collection of tree occurrences. The two

data structuring concepts are record and

parent child relationship (PCR). An occurrence

of the PCR type consists of one record of the

parent record-type and a number of record of

child record type.

A hierarchical database schema consists of a

number of hierarchical schemas. Each

hierarchy consists of a number of record type

and PCR types.

Entity-Relationship model: This is just a

model in which we represent entity sets and

their relationships through graphical

diagrams. Entity-sets are same as table or

record type. We will see this model in detail in

next unit where we will come across different

notations and their plotting.

Relational data model: The relational

database is a collection of tables. These tables

will be related to each other with the help of

foreign keys.

Object data model: The database is a

collection of objects. The relationship among

the objects is maintained using the foreign

key as attribute of the class built for record

type. The object data model has an advantage

of being able to store data like picture, sound

files or videos etc.

Object Relational data model: The relational

data model is extended to incorporate the

features of object data model so that picture

or such unstructured data could be stored

with the facilities of relational environment.

Data dictionary

The data dictionary is considered to be a

special type of table, which can only be

accessed and updated by database system

itself (not a regular user). A database system

consults the data dictionary before reading

modifying actual data.

The output of DDL is placed in the data

dictionary, which contains metadata, which is

data about data. Following are the data which

must be present in the data dictionary.

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 7

• Name of the relation.

• Name of the attribute of each relation

• Domains and lengths of attributes.

• Name of views defined on the

database, and definition of those

views.

• Integrity constraints.

• Name of authorized users.

• Authorization and accounting

information about users.

• Password or other information used

to authenticate users.

• Number of tuples in each relation.

• Method of storage in each relation.

May also note the storage information

(sequential hash or heap) of relation and the

relation where each relation is stored.

May also store following.

• Name of index.

• Name of the raltion being indexed.

• Attribute on which the indexing is

done.

• Type of index formed.

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 8

SQL (Structured Query Language)

Introduction

The history of SQL begins in an IBM laboratory

in San Jose, California, where SQL was

developed in the late 1970s. The initials stand

for Structured Query Language, and the

language itself is often referred to as "sequel."

It was originally developed for IBM's DB2

product (a relational database management

system, or RDBMS, that can still be bought

today for various platforms and

environments). In fact, SQL makes an RDBMS

possible. SQL is a nonprocedural language, in

contrast to the procedural or third generation

languages (3GLs) such as COBOL and C that

had been created up to that time.

Nonprocedural means what rather than how.

For example, SQL describes what data to

retrieve, delete, or insert, rather than how to

perform the operation.

Types of language

Data Definition Language (DDL) statements

are used to define the database structure or

schema. Some examples:

CREATE - to create objects in the

database.

ALTER – alters structure of the database.

DROP - delete objects from the database

TRUNCATE - remove all records from a

table, including all spaces allocated for the

records are removed.

COMMENT - add comments to the data

dictionary.

RENAME - rename an object.

Data Manipulation Language (DML)

statements are used for managing data

within schema objects.

Some examples:

SELECT - Retrieve data from the database

INSERT - Insert data into a table.

UPDATE - Updates existing data within a

table.

DELETE - deletes all or selected records

from a table, the space for the records

remain.

MERGE - UPSERT operation (insert or

update)

CALL - Call a PL/SQL or Java subprogram.

EXPLAIN PLAN - explain access path to

data.

LOCK TABLE - control concurrency.

Data Control Language (DCL) statements

are used to manage the users authority.

Some examples:

GRANT - gives user's access privileges to

database.

REVOKE - withdraw access privileges given

with the GRANT command.

Transaction Control (TCL) statements are

used to manage the changes made by

DML statements. It allows statements to

be grouped together into logical

transactions.

Some examples:

COMMIT - save work done.

SAVEPOINT - identify a point in a

transaction to which you can later roll

back.

ROLLBACK - restore database to original

since the last COMMIT.

SET TRANSACTION - Change transaction

options like isolation level and what

rollback segment to use.

Creating a table

SQL provides CREATE TABLE command using

which we can define structure of a table. Each

table column definition is a single clause in

the create table syntax which is separated

from each other by a comma. Finally, the SQL

statement is terminated with a semi colon.

Syntax:

CREATE TABLE <TableName>

(

 <attribute1> <datatype>(<size>),

 <attribute2> <datatype>(<size>),

 :

 .

 <attributen> <datatype>(<size>)

);

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 9

Rule for creating table:

• A name can have maximum up to 30

characters.

• Alphabets from A-Z, a-z and number from

0-9 are allowed

• A name should begin with an alphabet.

• The use of special characters like _ is

allowed and also recommended. (Special

characters like $, # are allowed only in

Oracle).

• SQL reserved words not allowed.

Data types in Oracle

Following are some most popular data types.

Using these data types we can define the

domain of a attribute.

Number (precision, scale) The Number data

type is used to store numbers (fixed or

floating point). Maximum size is 38 digits of

precision.

Char(size) This data type is used to store

character string values of fixed size. The size

in brackets determines the number of

characters the cell can hold. If the inserted

string has less than that char then rest of the

entry is padded with space. The maximum this

data type can hold is 2000B.

Varchar(size) This data type is used to store

variable length alphanumeric data. the

inserted values will not be padded by spaces.

The maximum this data type can hold is

4000B.

Nchar(size) This data type is similar to char

except the fact that it can store any natural

language character. It takes 3B to store one

char.

Nvarchar(size) This data type is similar to char

except the fact that it can store any natural

language character. It takes 3B to store one

char.

Date This data type is used to represent date

and time. The standard format is DD-MMM-

YY as in 23-JAN-14.

Other data types are available in oracle like

long, raw etc.

Example: Create a table Student with

following structure.

Student(sid,sname,saddr,marks).

Sol:

create table Student

(

 sid varchar(5) PRIMARY KEY,

 sname varchar(15),

 saddr varchar(30),

 marks number(3)

);

This statement can be written in a single line.

This statement when executed will create a

table with name Student having four

attributes sid, sname, saddr and marks. The

key word PRYMARY KEY has been used to

enforce a constraint which will not allow

entries in sid which are repeated .And at the

same time the entries cannot be left blank.

Inserting values in table

The table created should be loaded with data

to be manipulated latter.

Syntax:

INSERT INTO <tablename>[(list of attribute)]

values(v1,v2,v3,...,vn);

vi represents the values for corresponding

attributes.

Example:

insert into Student(sid,sname,saddr,marks)

values(‘s1’,’ram’,’bilaspur’,60);

The above command will operate in following

two stape.

1. Creates a new row(empty) in the

database table

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 10

2. Loads the values passed (by the insert

statement) into the columns specified.

Note: Character values places within the

insert into statement must be enclosed in

single quotes (‘).

If there are less values being described than

there are columns in the table then it is

mandatory to indicate both the table column

name and its corresponding value in the insert

into statement.

Retrieving data from table

The SELECT command is used to retrieve the

records selected from one or more tables.

Following are the possibility of viewing

(retrieving) data from a table.

All rows and all columns

Syntax: Select * from <table_name>;

Example: Select * from Student;

Result:

Sid sname saddr marks

S1 ram bilaspur 60

S2 mohan raipur 40

:

Sn ramesh puri 80

Oracle allows a meta character asterisk (*) to

mean all attributes of the table.

Filtering table data

While viewing data from a table, it is rare that

all the data from the table will be required

each time. SQL provides a method of filtering

table data which are following.

• All rows of selected columns.

• Selected rows of all columns.

• Selected rows of selected columns.

All rows of selected columns

The retrieval of specified columns can be

done using following syntax.

SELECT column1,column2,...,columnk form

<table name>;

Example: Retrive the sid and marks of all the

student.

SELECT sid, marks from Student;

sid marks

S1 60

S2 40

:

Sn 80

Selected rows of all columns

If we have to retrieve selected records we will

have to specify selection condition. Following

is the syntax.

SELECT * from <table_name> WHERE

<condition>;

Example: Retrieve the records of those

students who have marks greater than 50.

SELECT * from Student WHERE marks>50;

Result:

Sid sname saddr marks

S1 ram bilaspur 60

S4 gajab raipur 70

:

Sn ramesh puri 80

only those records which has marks greater

than 50.

Condition is following format.

<Attribute_name > <operator>

<attribute_name/value>

Means condition will have a logical expression

which will evaluate either to TRUE or FALSE.

The records for which the condition will

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 11

evaluate to TRUE those records will be

selected.

Selected rows of selected column

 To view a specific set of rows and column we

will use following syntax.

SELECT <List of column> From <table_name>

WHERE <condition>;

Example: Retrieve the sid and marks of those

students who have got more than 50 marks.

SELECT sid, marks FROM Student WHERE

marks>50;

Result:

Sid marks

S1 60

S4 70

:

Sn 80

Only the sid and marks of those students who

have more than 50 marks.

Eliminating Duplicate rows while using a

select statement

SELECT DISTINCT <attribute list> FROM

<table_name>;

DISTINCT is a keyword used to eliminate the

duplicate rows.

example: Retrieve the different marks given

to the students.

SELECT DISTINCT marks FROM Student;

Result:

marks

60

40

30

:

80

Sorting data in a table

Oracle allows data from a table to be viewed

in sorted order. Following is the syntax.

SELECT * FROM <table_name> ORDER BY

<attribute1>,<attribute2>[order];

Example: Select * from Student order by

marks DESC;

By default order is ASC which stands for

ascending order. For viewing data in

descending order the word DESC must be

mentioned after the column name.

Creating a table from a table

Syntax: CREATE TABLE

<table_name>(<attribute1>,<attribute2>) AS

SELECT <attribute1>,<attribute2> FROM

<table_name>;

Example: Create table

chhotastudent(sid,marks) AS select sid, marks

from student;

When the above statement will be executed a

table named chhotastudent will be created

with two attributes sid and marks. The data

types of attributes will be taken from the

student table. The result will a table named

chhotastudent with two attributes and the

values of those attributes for all the records

from table student.

To create a target table without the records

from the source table (i.e. create the structure

only), the select statement must have a where

clause. The where clause must specify a

condition that cannot be satisfied.

Inserting data into table from another table

Syntax: Insert into <table_name> Select

<attribute1>, <attributen>from

<table_name>;

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 12

Example: Insert into Chhotastudent Select sid,

marks from Student;

Insertion of a data set into a table from

another table

Syntax:

Insert into <table_name> select <list of

attributes> from <table_name> where

<condition>;

Example: Insert into Chhotastudent Select sid,

marks from Student where marks<=40;

Delete Operations

The DELETE command deletes rows from the

table that satisfies the condition provided by

its where clause, and return the number of

record deleted.

Note: If the DELETE statement is executed

without where clause then all the rows are

deleted.

Removal of all Rows

Syntax: DELETE FROM <table_name>;

Example: Empty the Student table.

Delete from student;

Removal of Specified Rows

Syntax: DELETE FROM <table_name> where

<condition>;

Example: Delete records of those students

who have less than 10 marks.

DELETE from student where marks<10;

Updating the content of a table

The UPDATE command is used to change or

modify the content of existing records of a

table.

Updating all rows

Syntax: UPDATE <table_name> SET

<attribute1>=<expression1>,

<attributen>=<expression>;

Example: Update the saddr of student by

changing its city name to bilaspur.

UPDATE Student SET saddr=’bilaspur’;

Updating a selected set of records in a table

Syntax: UPDATE <table name> SET

<attribute>=<expression> WHERE

<condition>;

Example: Update the marks of those students

whose marks is less than 10 and set to 0.

Update student set marks=0 where marks<10;

Modifying the structure of tables

The ALTER TABLE command is used to modify

the structure of a table. With ALTER TABLE it

is possible to add or delete columns, or

change the data type of existing columns.

ALTER TABLE works by making a temporary

copy of the original table. The alteration is

performed on the copy, them the original

table is deleted and the new one is renamed.

While ALTER TABLE is executing the original

table is still readable by users of ORACLE.

Syntax for adding new column:

 ALTER TABLE <table_name>

ADD(<NewColumnName> <data type(size)>,

<NewColumnName> <data type(size)>);

Example: Add a new column deptno to the

table Student whose data type should be

varchar(3).

ALTER TABLE Student ADD(deptno

varchar(3));

Syntax for dropping a column from a table

ALTER TABLE <table_name> DROP COLUMN

<columnName>;

Example: Drop the column saddr from the

table student.

ALTER TABLE Student DROP COLUMN saddr;

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 13

Syntax for modifying existing columns

ALTER TABLE <table_name>

MODIFY(<columnName>

<NEWDATATYPE>(<newsize>));

Example: Alter the Student table to allow the

sname field to hold maximum of 40

characters.

ALTER TABLE Student MODIFY (sname

varchar(40));

Restrictions on the ALTER TABLE

The following tasks cannot be performed

when using the ALTER TABLE command.

• Change the name of a table.

• Change the name of the column

• Decrease the size of a column if table data

exists.

Renaming tables

Oracle allows renaming of tables. The syntax

is as follows.

RENAME <table_name> TO

<new_table_name>;

Example: Change the name of the table

Student to univstudent.

RENAME Student to univstudent;

Destroying Tables

DROP TABLE statement with the table name

can destroy a specific table. If a table is

dropped all records held within it are lost and

cannot be recovered.

Syntax: DROP TABLE <table_name>;

Example: Remove the table chhotastudent

along with the data held.

DROP TABLE chhotastudent;

Truncating tables

TRUNCATE TABLE empties a table completely.

It is equivalent to a DELETE statement that

deletes all rows, but there are practical

differences .

TRUNCATE TABLE differs from DELETE in the

following ways:

� Truncate operation drop and re-create

the table, which is much faster than

deleting rows one by one.

� Truncate operations are not transaction-

safe(i.e. an error will occur if an active

transaction or an active table lock exists)

� The number of deleted rows are not

returned.

Syntax: TRUNCATE TABLE <table_name>;

Example: Truncate the table Student.

TRUNCATE TABLE Student;

Displaying the table Structure

To display information about the columns

defined in a table use the following Syntax.

DESCRIBE <table_name>;

This command displays the column names,

whether NULL values are allowed or notand

the data type with size.

Example: Show the structure of table Student.

DESCRIBE Student;

Note : In place of using DESCRIBE the first four

characters can be used to serve the same

purpose. For example

DESC Student;

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 14

Data constraints

Business rules, which are being enforced on

data being stored in a table, are called

constraint. Constraints super control the data

being entered into a table for permanent

storage.

Oracle permits data constraints to be

attached to table columns via SQL syntax that

checks data for integrity prior storage. Even if

a single column of the record being inserted

into the table fails a constraint, the entire

record is rejected and not stored in the table.

Both the CREATE TABLE and ALTER TABLE SQL

commands can be used to attach constraints

to a table column.

Types of data constraints

There are two types of data constraints

namely I/O constraints and business rule

constraints.

I/O Constraints

This data constraint determines the speed at

which data can be inserted or extracted from

a Oracle table.

a) PRIMARY KEY

A primary key column in a table has

special attributes:

• It defines the column as mandatory

column (i.e. the column can not be

left blank).

• The data present throughout the

column must be unique.

At column level

Syntax:

<column name> <data type(size)>

PRIMARY KEY

At table level

Syntax:

PRIMARY KEY(column name[,column

name])

b) FOREIGN KEY

Foreign key represents relationship

between tables. A foreign key is a column

(or a group of columns) whose values

whose values are derived from the

primary key or unique key of some other

table or same table.

At table level

Syntax:

<attribute name> <data type>

REFERENCES <table name>[(<attribute>)]

At table level

Syntax:

Foreign key

(<columnName>[,<ColumnName>])

References

<TableName>[(<columnName>[,<Column

Name>])]

c) UNIQUE

The Unique column constraint will not

allow duplicate values however NULL is

allowed.

At column level

Syntax:

<columnName> <data type(size)> UNIQUE

At table level

Syntax:

Unique

(<columnName>[,<columnName>])

d) NOT NULL

A NULL value is different from a blank or

zero. A NULL is a unknown or not existing

value.

At column level

Syntax:

<columnName> <data type(size)> NOT

NULL

At table level

NOT NULL constraint cannot be applied at

table level

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 15

Business rule constraints

Business rule are determined by business

managers which will vary from system to

system

a) CHECK

Check constraints are used to validate

business rules. The check constraint will

have a logical expression that evaluates

either to TRUE or FALSE.

A check constraint takes subsequently

longer time to execute as compared to

other above constraints.

Syntax at column level

<ColumnName> <data type>(size) CHECK

(<logical expression>)

Syntax at table level

CHECK(<logical expression>)

 General Form of SELECT

statement

4SELECT [DISTINCT]<LIST OF ATTRIBUTE>

1FROM <LIST OF TABLE NAME>

2[WHERE <condition>]

3[GROUP BY <attributename>[HAVING

<condition>]]

5[ORDER BY<attribute>[DESC]];

The numbers in front of the statement reflect

the order of execution.

We are mostly aware of all the above clauses

except the Group By clause.

Group By clause

The Group By clause is used to retrieve the

information group wise. The group by clause

makes one record for each group. From each

group the attribute on which it has been

grouped, can be projected as it is and the rest

attributes can be projected only with the help

of aggregate functions.

Aggregate Function

Aggregate functions are those functions which

are used on group of values. Examples of

aggregate functions are following.

MIN(<attribute>)

Finds the minimum value in an attribute.

MAX(<attribute>)

Finds the maximum value in an attribute.

SUM([Distinct]<attribute>)

Finds the sum of all the values of attribute.

COUNT([distinct]<attribute>)

Counts the number of records in the result or

the attribute.

AVG([Distinct]<attribute>)

calculate the average of the values in the

attribute.

Significance of Distinct.

When Distinct is used then the duplicate

values are considered only once.

Nested Query

When a query is written inside another query

then it is called Nested query. Anywhere in

query we can have sub query. The inner query

is also called sub query.

R S

A

1

2

10

4

 Example: Retrieve the value of attribute A

from relation R which is also present in

attribute B of relation S.

Select R.A from R where R.A IN (Select S.B

from S);

B

1

5

10

11

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 16

Operators used in nested query

Following operators can be used in nested

queries.

 IN, NOT IN

The IN operator will take a single value in LHS

and a set of values in RHS. The IN operator

will evaluate to true only if The LHS is present

in the RHS set of values. NOT IN is just

opposite of IN operator.

OP ANY

OP stands for operator. Operators can be =,

<>, >, <, >=,<=. This operator also takes a

single value in LHS and a set of value in RHS.

The condition evaluates to true if the value on

the left hand side satisfies the operator

condition with any of the values in the set.

OP ALL

OP is similar to above. This operator evaluates

to true if it satisfies the operator condition for

all the values of the set.

EXISTS, NOT EXISTS

This operator only a SQL query on RHS. This

evaluates to true if the result of query is

having at least one record. It evaluates to

False if there is no record in the result of

query following the EXIST operator. NOT

EXISTS is just opposite of EXISTS.

Correlated Nested Query

A query is said to be a correlated nested

query if the table listed in outer query is also

used in inner query.

Example:

Select R.A from R where EXISTS(Select S.B

from S where R.A=S.B);

Substring comparison

LIKE operator is used for substring

comparison.

Example: Retrieve the name of students

whose address starts from ‘Bilas’.

Sol: SELECT SNAME FROM STUDENT WHERE

SADDRESS LIKE ’Bilas%’;

% is used for representing any number of

character.

_(underscore) is used to represent a single

character.

Arithmetic operators

Arithmetic operators can be used in select

clause and also in where clause. Operators are

+,-,*,/ for numeric attribute and ‘||’ for

string.

Example : Select name, 1.1*salary from EMP.

BETWEEN operator.

Can be used to mention a condition for a

range.

Example: Select * from EMP where salary

BETWEEN 30000 AND 40000;

BETWEEN is always used with AND operator.

IS operator

IS operator is used to compare NULL. NULL

cannot be compared using ‘=’ operator.

Example: Retrieve the name of those students

who don’t have a passport number.

Sol: Select sname from student where ppno IS

null;

ppno is a attribute of table student which

stores the passport number.

Views in SQL

View is a virtual table which is derived from

other tables. It is based on some SQL query.

Example: Create a view faculty_view on table

student which will have only attributes sid,

sname and marks from table student.

Sol: Create view faculty_view AS select sid,

sname, marks from student;

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 17

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 18

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 19

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 20

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 21

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 22

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 23

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 24

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 25

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 26

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 27

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 28

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 29

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 30

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 31

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 32

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 33

K. Bhardwaj (MCA/Msc 3rd RDBMS) 2014

Guru Ghasidas University Page 34

