
  
 
 

 

 

 

Introduction to Automata Theory 
 

Automata theory is basically about the study of different mechanisms for generation and 
recognition of languages. Automata theory is basically for the study of different types of 
grammars and automata. A grammar is a mechanism for the generation of sentences in a 
language. Automata is a mechanism for recognition of languages. Automata theory is mainly for 
the study of different kinds of automata as language recognizers and their relationship with 
grammars. 

 
In theoretical computer science, automata theory is the study of abstract machines and problems 

they are able to solve. Automata theory is closely related to formal language theory as the automata are 
often classified by the class of formal languages they are able to recognize. 
 

An automaton is a mathematical model for a finite state machine (FSM). A FSM is a 
machine that, given an input of symbols, "jumps" through a series of states according to a 
transition function (which can be expressed as a table). In the common "Mealy" variety of FSMs, 
this transition function tells the automaton which state to go to next given a current state and a 
current symbol. 

 
The input is read symbol by symbol, until it is consumed completely (think of it as a tape 

with a word written on it, that is read by a reading head of the automaton; the head moves forward 
over the tape, reading one symbol at a time). Once the input is depleted, the automaton is said to 
have stopped. 

 
Depending on the state in which the automaton stops, it's said that the automaton either accepts or 

rejects the input. If it landed in an accept state, then the automaton accepts the word. If, on the other hand, it 

lands on a reject state, the word is rejected. The set of all the words accepted by an automaton is called the 

language accepted by the automaton. 
 
Automata play a major role in compiler design and parsing. 

 
Finite Automata is the simplest one of different classes of automata. Mainly there are 3 variants 

of finite automata. They are: 
 
Deterministic Finite Automata Non-
deterministic Finite Automata 
Non-deterministic Finite Automata with Є-transition. 

Here we define the acceptability of strings by finite automata. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



  

  
  

 

 

Description of Automaton 
 

An automaton can be defined in an abstract way by the following figure. 
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Model of a discrete automaton 

 

i) Input: - At each of the discrete instants of time t1,t2,…..input values I1,I2……… each of 

which can take a finite number of fixed values from the input alphabet ∑, are applied to the input 

side of the model.   
ii) Output : - O1,O2….are the outputs of the model, each of which can take finite numbers 

of fixed values from an output O.   
iii) States : - At any instant of time the automaton can be in one of the states q1,q2…..qn  

 
iv) State relation : - The next state of an automaton at any instant of time is determined by 

the present state and the present input. ie, by the transition function.   
v) Output relation : - Output is related to either state only or both the input and the state. It should 

be noted that at any instant of time the automaton is in some state. On 'reading' an input symbol, the 

automaton moves to a next state which is given by the state relation.  

 
An automaton in which the output depends only on the input is called an automaton without a 

memory. An automaton in which the output depends on the states also is called automaton with a finite 

memory. An automaton in which the output depends only on the states of the machine is called a 

Moore Machine. An automaton in which the output depends on the state and the input at any instant of 

time is called a Mealy machine. 

 

Definition of a finite automaton 
 

Basic model of finite automata consists of : 
 
(i) An input tape divided into cells, each cell can hold a symbol   
(ii) A read head which can read one symbol at a time from a finite alphabet  
 
 
 
 
 
 



  
 
 

 

(iii) A finite control which works within a finite set of states. At each step, it changes its state 

depending on the current state and input read. Its change of state is specified by a transition 

function. It accepts the input if it is in a set of accepting states. 
 

 

Input Tape  
Read Head 

 

 

Finite 
Control 

 
 
 
 
 

a) Finite Automata – Formal Definition 
 

A finite automaton can be represented by a 5-tuple (Q,∑,δ,q0,F) where Q – 
finite set of internal states 
∑ - finite set of symbols called input alphabet 
δ – transition function 
q0 Є Q – start state or initial state 
F ϵ Q – set of accepting states or final states  

Transition function describes the change of states during the transition. This mapping is usually 
represented by Transition diagram or Transition table. 

 

Transition diagrams and Transition Systems 
 

A transition graph or a transition system is a finite directed labeled graph in which each 

vertex (node) represents a state and the directed edges indicate the transition of a state and the 

edges are labelled with input. A transition graph contains: 
 
(i) A finite set of states, one of which are designated as start state and some of which are 

designated as final states. 

 

Start state 
 
 
 
 

Final state 

 

(ii) An alphabet  of possible input letters from which input strings are formed.  
(iii) A finite set of transitions that show, how to go from some states to some other states.  
So a transition system is a 5-tuple (Q,∑,δ,q0,F) 



 

 
 
 

 

If δ(qi,a)=qj, there is an edge labeled by 'a' from qi to qj . A transition system accepts a string 

'w' in ∑* if 
 

1) there exists a path which originates from some initial state, goes along the arrows, and 

terminates at some final state.  
 

2) the path value obtained by concatenation of all edge-labels of the path is equal to 'w'.  

 

Transition Table 

 
The description of the automation can be given in the form of transition table also, in which we 

tabulate the details of the transitions defined be the automaton from one state to another. 

 
eg: Draw the transition diagram and transition table for accepting the language 

L={all words ending in 'b' over (a,b)} 
 
 
 
 
 
 
 
 
 

 b   
 

q  q1 Transition Diagram  
   

 

0    
 

a a  b 
 

 
 
 
 
 
 
 

 

δ /  a  b Transition 

Table 
 

q0 q0 q1  
 

  
 

*  q1 q1 q0   
 

     
 

 
 
 
 

b) Deterministic and Non deterministic Finite Automata 

 

Deterministic fin ite automata (DFA) 
Each state of an automaton of this kind has a transition for every symbol in the alphabet. 



 
 

 
 
 

 

Deterministic Finite Automata can be defined as M=(Q,∑,δ,q0,F) 

where Q is the set of states 
 
∑ is the input symbols  

δ is the transition function Q x ∑ Q q0 is 

the start state 
 
F is the final state 
 

 

Nondeterministic finite automata (NFA)  
States of an automaton of this kind may or may not have a transition for each symbol in the 

alphabet, or can even have multiple transitions for a symbol. The automaton accepts a word if there 
exists at least one path from q0 to a state in F labeled with the input word. If a transition is 
undefined, so that the automaton does not know how to keep on reading the input, the word is 
rejected. 
NFA is equivalent to the DFA. 

 

Non-Deterministic Finite Automata also can be defined as M=(Q,∑,δ,q0,F) 

where Q is the set of states 
 
 is the input symbols  

δ is the transition function Q x ∑ 2
Q

 q0 is 

the start state 
 
F is the final state 
 
Nondeterministic finite automata, with ε transitions (FND-ε or ε-NFA)  
Besides of being able to jump to more (or none) states with any symbol, these can jump on no 
symbol at all. That is, if a state has transitions labeled with ε, then the NFA can be in any of the 
states reached by the ε-transitions, directly or through other states with ε-transitions. The set of 
states that can be reached by this method from a state q, is called the ε-closure of q. 
 
 
 
Moore machine  
The FSM uses only entry actions, i.e. output depends only on the state. The advantage of the 
Moore model is a simplification of the behaviour. The example in figure 1 shows a Moore FSM of 
an elevator door. The state machine recognizes two commands: "command_open" and 
"command_close" which trigger state changes. The entry action (E:) in state "Opening" starts a 
motor opening the door, the entry action in state "Closing" starts a motor in the other direction 
closing the door. States "Opened" and "Closed" don't perform any actions. They signal to the 
outside world (e.g. to other state machines) the situation: "door is open" or "door is closed". 



 

 

 
 

  

 
 
 
 
 
 
 
 
 
 

 

Transducer FSM: Mealy model example 

 

Mealy machine  
The FSM uses only input actions, i.e. output depends on input and state. The use of a Mealy FSM 
leads often to a reduction of the number of states. The example in figure 4 shows a Mealy FSM 
implementing the same behaviour as in the Moore example (the behaviour depends on the 
implemented FSM execution model and will work e.g. for virtual FSM but not for event driven 
FSM). There are two input actions (I:): "start motor to close the door if command_close arrives" 
and "start motor in the other direction to open the door if command_open arrives". 

 
In practice mixed models are often used. 

 

 

Extended Transition function of DFA 
  

The language of a DFA is the set of labels along the paths that lead from the start state to 
any accepting state. Now we extended the transition function that describes what happens when we 
start in any state and follow any sequence of inputs. If δ is our transition function, the extended 
function constructed from δ will be called δ. 

  
The extended transition function is the function that takes a state 'q' and a string 'w' and returns a 

state 'p', the state that automation reaches when starting in state 'q' and processing the sequence of inputs 'w'. 
We define δ by induction on the length of the input string as follows:  
Basis : δ(q,Є)=q. ie, if we are in state q and read no input, then we are still in the state q. Induction : 

Suppose 'w' is a string of the form xa, that is a is the last symbol of w and x is the substring of w, 

consisting of all except the last symbol 'a'. For example, 

 
w=1101 is broken into x=110 and a=1 then δ(q,w) = δ(δ(q,x),a)  

ie, to compute δ(q,w), first compute δ(q,x), the state that the automation is in after processing all 

but the last symbol of w. Suppose this state is P, that is δ(q,x)=P. Then δ(q,w) is what we get by 

making a transition from state P on input a, the last symbol of w. 
δ(q,w)= δ(P,a) 

 

Extended Transition function of NFA 
 

As for DFA's, we need to extended the transition function δ of an NFA to a function δ' that takes a 
state and string and return the set of states. 
Basis : δ(q,Є)={q}. That is without reading any input symbols, we are only in the same state. 



 
 
 

 
 
Induction : Suppose w is of the form w=xa, where a is the last symbol and x is the substring 
containing rest of w. Let us suppose that 
 

δ(q,x)={p1,p2…..pk} 
 

Let U δ(pi,a)={r1,r2……….rm} then 
  
δ(q,w)={r1,r2……..rm}. Less formally, we compute δ(q,w) by first computing δ(q,x), and by then 
following any transition from any of these states that is labeled a. 

 

Language acceptability by Finite Automata 
  

Suppose a1,a2,a3………….an is a sequence of input symbols, q0,q1,q2…….qn are set of states 
where q0 is start state and qn is final state and transition function processed as 
δ(q0,a1)=q1 
δ(q1,a2)=q2 
δ(q2,a3)=q3 
.... 
... 
δ(qn-1,an)=qn  

Input a1,a2,a3……..an is said to be 'accepted ' since qn is a member of the final state, and if 

not then it is 'rejected'. 
 

Language accepted by DFA 'M' written as 
L(M)={w/ δ(q0,w)=qf for some qf in F} 

 

Examples of DFA 
 

 

Example 1: Q = { 0, 1, 2 }, = { a }, A = { 1 }, the initial state is 0 and is as shown in the 

following table. 
 
 

State (q) Input (a)  Next State ( (q, a) ) 

0 a 1 

1 a 2 

2 a 2 
 
A state transition diagram for this DFA is given below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

  
  

 

 

If the alphabet of the Example 1 is changed to { a, b } instead of { a }, then we need a DFA such as shown in 

the following example to accept the same string a. It is a little more complex DFA. 
 
Example 2: Q = { 0, 1, 2 }, = { a, b }, A = { 1 }, the initial state is 0 and is as shown in 

the following table. 

 

State (q) Input (a)  Next State ( (q, a) )  
0 a 1 

0 b 2 

1 a 2 

1 b 2 

2 a 2 

2 b 2 
 
 
 

Note that for each state there are two rows in the table for corresponding to the symbols a and b, 

while in the Example 1 there is only one row for each state. 

 
A state transition diagram for this DFA is given below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
      

Examples of NFA 

 

       

 State (q)  Input (a)  Next State (  (q, a) ) 
 

 

   

 

   

0  a { 1 , 2 } 

Example 1: Q = { 0, 1, 2 },   = { a, b }, A = { 2 }, the 
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initial state is 0 and  is as shown in the following table.  

       
 

        

 1  a    
 

       
 

 

   

 

   

1  b { 2 }  
 

        

 2  a    
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 2  b    
  



  

  
  

 
 
 

Note that for each state there are two rows in the table for corresponding to the symbols 

a and b, while in the Example 1 there is only one row for each state.  
A state transition diagram for this finite automaton is given below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(i) Conversion of NFA to DFA 
 

The conversion of a DFA equivalent to an NDFA involves three steps.  
Step 1: Convert the given transition system into state transition table where each state corresponds 

to a row and each input symbol corresponds to a column.  
Step 2: Construct the successor table that lists subsets of states reachable from the set of initial 

states.  
Step 3: The transition graph given by the successor table is the required deterministic system. The 

final states contain some final state of NDFA.  
eg: Convert the following NFA to DFA 
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δ(q0,a)={q0,q1} new state 
δ(q0,b)={q0} old state 
 
δ({q0,q1},a)= δ (q0,a)Uδ(q1,a) 

={q0,q1}U{q2}  
={q0,q1,q2} new state 

 
 

δ({q0,q1 },b)= δ (q0,b)Uδ(q1,b) 
={q0}U{q1} 
={q0,q1} old state 

 
Similarly, 
δ({q0,q1,q2},a)= δ(q0,a) U δ(q1,a) U δ(q2,a)) 
= {q0,q1,q2,q3} new state 
 
δ({q0,q1,q2},b)= {q0,q1,q3} new state 
 
δ({q0,q1,q2,q3},a)= {q0,q1,q2,q3} old state 
 
δ({q0,q1,q2,q3},b)= {q0,q1,q3,q2} old state 
 
δ({q0,q1,q3},a)= {q0,q1,q2,q3} old state 
 
δ({q0,q1,q3},b)= {q0,q1,q3,q2} old state 
 
Now we can draw the transition table for DFA. 
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 δ/ a b 

A {q0} { q0,q1} { q0 } 

    
 
 
 
 



   
 

      
 

      
 

     

 
 

 B {q0,q1} { q0,q1,q2 } {q0,q1} 
 

 C {q0,q1,q2} {q0,q1,q2,q3} {q0,q1,q3}  
 

 D *{q0,q1,q2,q3} {q0,q1,q2,q3} {q0,q1,q2,q3}  
 

 E *{q0,q1,q3} {q0,q1,q2,q3} {q0,q1,q2,q3}  
 

 
Now let us draw the transition diagram 
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c) Finite Automaton with Є-transition  
Besides of being able to jump to more (or none) states with any symbol, these can jump on 

no symbol at all. That is, if a state has transitions labeled with ε, then the NFA can be in any of the 
states reached by the ε-transitions, directly or through other states with ε-transitions. The set of 
states that can be reached by this method from a state q, is called the ε-closure of q. 

  
An NFA can be modified to permit transition without input symbols, along with one or 

more transition on input symbols; we get a "NFA with Є transition". Since the transition is made 
without symbols the transition is called as "Є-transition". These transitions can occur when no 
input is applied. But it is possible to convert a transition system with Є-transition into an 
equivalent transition system without Є-moves. 

  
It is to be noted that Є is not a symbol to appear on the tape. ie, Є-transition means a transition 

without scanning the symbol. ie, not moving the read head.  
eg: δ(q, Є)=p means that from the state 'q', it can jump to 'p' without moving the read head. ie, it 

can be in 'p' or 'q'. Thus it introduces a hidden non-determinism. Є-transitions are useful in 

specifying optional items in a string. 
eg: In a typical programming language, while specifying a numeric constant, the sign is optional. 
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Formal Definition of Є-NFA 
  

Є-NFA is defined as M=(Q,,δ,q0,F) where Q,,q0 and F are same as in NFA but δ includes Є 

moves and is defined as δ: QxU{ Є } 2
Q

.  
To define the behavior of Є-NFA on strings, we require a function called Є-closure, which is 

defined as Є-closure(q) is the set of all states reachable from q using Є-transitions. 
eg: 
 
 

  Є  Є 
 

q  q  q 
 

0  1 

1 

2 
 

 0  2 
 

    
 

 
 

 

Є-closure (q0)={q0,q1,q2} 

Є-closure (q1)={q1,q2} Є-

closure (q2)={q2} 
 

(ii)Conversion of NFA with Є-transition to NFA with out Є-transition 

(Eliminating Є- transition) 
  

Let M=(Q,,δ,q0,F) be an Є-NFA. There are some steps for the conversion of NFA with Є-

transition to NFA with out Є-transition. 
 
Step 1: Find the states of NFA without Є-transition including initial states and final states.  
Step 2: There will be same number of states. The initial state of NFA without Є-transition will be Є-

closure of initial state of Є- NFA. 
 

ie, Є-closure (q0)={q0,q1,q2} initial state for NFA without Є-transition, rest of the states 

are 
 

Є-closure(q1)={q1,q2} 
Є-closure(q2)={q2}  

Step 3: The final states of NFA without Є-transitions are all those new states which contains final 

state of Є-NFA as member. 
 
Step 4: Now find out δ' to find out the transitions for NFA without Є-transition. Ignore Ф entries 

and Є-transitions column. 
 
 
 
 
  



  

  
  

 
 
eg: Convert the following NFA with Є-transition to NFA without Є-transition 
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c 

 

  a       
 

           
 

From the above transition diagram,     
 

δ/ a b  c   Є    
 

q0 { q0 } { Ф }  { Ф }   {q1}    
 

q1 { Ф } {q1}  { Ф }   {q2}    
 

* q2 { Ф } { Ф }  {q2}   { Ф }    
 

 
Є-closure (q0)={q0,q1,q2}=qa new initial state for NFA without Є transition, rest of the states are 
Є-closure(q1)={q1,q2}=qb new state 
Є-closure(q2)={q2}=qc new state 

 
δ'({q0,q1,q2},a)= δ'(qa,a)=Є-closure (δ(q0,q1,q2),a) 

= Є-closure (δ(q0,a) U δ(q1,a) U δ(q2,a))  
= Є-closure(q0 U Ф U Ф)  
= Є-closure(q0)  
={q0,q1,q2} 

 
δ'({q0,q1,q2},b)= δ'(qa,b)=Є-closure (δ(q0,q1,q2),b) 

= Є-closure (δ(q0,b) U δ(q1,b) U δ(q2,b))  
= Є-closure(Ф U {q1} U Ф)  
= Є-closure(q1)  
={q1,q2} 

 
δ'({q0,q1,q2},c)= δ'(qa,c)=Є-closure (δ(q0,q1,q2),c) 

= Є-closure (δ(q0,c) U δ(q1,c) U δ(q2,c))  
= Є-closure(Ф U Ф U q2)  
= Є-closure(q2)  
={q2} 

 
 

 

.  



  
 

 

δ'({q1,q2},a)= δ'(qb,a)=Є-closure (δ(q1,q2),a) 
= Є-closure (δ(q1,a) U δ(q2,a))  
= Є-closure(Ф U Ф)  
= Є-closure(Ф)  
= Ф  

 
δ'({q1,q2},b)= δ'(qb,b)=Є-closure (δ(q1,q2),b) 

= Є-closure (δ(q1,b) U δ(q2,b))  
= Є-closure(q1 U Ф)  
= Є-closure(q1)  
= {q1,q2}  

 
δ'({q1,q2},c)= δ'(qb,c)=Є-closure (δ(q1,q2),c) 

= Є-closure (δ(q1,c) U δ(q2,c))  
= Є-closure(Ф U q2)  
= Є-closure(q2)  
= {q2}  

 

δ'({q2},a)= δ'(qc,a)=Є-closure (δ(q2),a) 

= Ф 
 

 

δ'({q2},b)= δ'(qc,b)=Є-closure (δ(q2),b) 

= Ф 

 

δ'({q2},c)= δ'(qc,c)=Є-closure (δ(q2),c) 
= Є-closure(q2)  
= {q2}  

Now we can draw the transition table for NFA without Є-transition. 

 

 δ/ a b c 

A {q0,q1,q2} { q0,q1,q2} { q1,q2 } { q2 } 

 *    

B * {q1,q2} { Ф } {q1,q2} { q2 } 

C * {q2} { Ф } { Ф } {q2} 
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Regular operations, Regular expressions and 

Regular languages 

 

a) Regular expressions   

Regular expressions are precisely defined by a set of rules. For each rule, we describe the 

corresponding language. The languages accepted by finite automata are easily described by simple expressions 

called regular expressions. Every regular expression specifies a language. Regular expression is a declarative 

way to express the strings, we want to accept. 

Definition of Regular expression 

The set of regular expression is defined by the following rules:  

1) Every letter of  can be made into a regular expression, null string, Є itself is a regular expression.  
 
2) If r1 and r2 are regular expression, then  

i) (r1) ii) r1r2 iii) r1+r2 iv) r1* v) r1+ 

are also regular expression. 
 

b) Regular languages  
 



  
 
 

 

Regular languages are those that can be generated by applying certain standard 

operations like union, concatenation and closure, a finite number of times. They can be 

recognized by finite automata.  
Let  be an alphabet. The regular expressions over  and the sets that they denote 

are defined recursively as follows.  
1)  is a regular expression and denotes the empty set.   
2)  is a regular expression and denotes the set {}.   
3) For each 'a' in , a is a regular expression and denotes the set {a}.   
These are known as simple regular languages. Regular language over an alphabet  

is one that can be obtained from these basic (simple) languages using the operations of 

union, concatenation and closure, a finite number of times. 
 

 

c) Regular operations   
Mainly there are 3 operations on regular expressions. They are union, 

concatenation, and kleene closure operation. 

If L1 and L2 are any elements of set R of regular languages over  and r1 

and r2 are the corresponding regular expressions, 

i) Union – (L1 U L2) corresponding regular expression is (r1+r2)   
ii) Concatenation – (L1.L2) corresponding regular expression is (r1. r2)   
iii) Kleene closure – (L1*) corresponding regular expression is (r1)*  

 

Algebra of Regular Expression 

 

Regular expressions satisfy the following algebraic identities. These identities help 

us in simplifying regular expressions.  
(1) Identity Law 

.R=R.=R 

+R=R+=R   
(2) Idempotent 

Law R+R=R 

(R*)=R*  

(3) Distributive Law   
A.(B+C)=A.B+A.C  

(4) Associative Law 

A.(B.C)=(A.B).C 

A+(B+C)=(A+B)+C  
(5) Annihilation 

.R=R.= 

 
 



  
 
 

 

Example 1: It is easy to see that the RE (0+1)*(0+11) represents the language of all 

strings over {0,1} which are either ended with 0 or 11. 

 
Example 2: Consider the language of strings over {0,1} containing two or more 1's. 

 

Solution : There must be at least two 1's in the RE somewhere and what comes before, 

between, and after is completely arbitrary. Hence we can write the RE as 

(0+1)*1(0+1)*1(0+1)*. But following two REs also represent the same language, each 

ensuring presence of least two 1's somewhere in the string 

 
i) 0*10*1(0+1)*  

 

ii) (0+1)*10*10*  

 

iii) Regular Expression to Finite state Automata :  

 

Lemma : If L(r) is a language described by the RE r, then it is regular i.e. there is a FA 

such that L(M) L(r). 

 
Proof : To prove the lemma, we apply structured index on the expression r. First, we show how to 
 

construct FA for the basis elements: , and for any . Then we show how to combine 

these Finite Automata into Complex Automata that accept the Union, Concatenation, Kleen 

Closure of the languages accepted by the original smaller automata. 

 
Use of NFAs is helpful in the case i.e. we construct NFAs for every REs which are 

represented by transition diagram only. 

 
Basis : 

 

 Case (i) :  . Then  . Then  and the following NFA N recognizes L(r). 

Formally  where Q = {q} and  . 













 Case (ii) :  .  , and the following NFA N accepts L(r). 

Formally  where  . 

 

 

.  



  

  
  

 
 
 
 
 
 
 
 
 
 

Since the start state is also the accept step, and there is no any transition defined, it will 

accept the only string and nothing else. 

 

 Case (iii) : r = a for some  . Then L(r) = {a}, and the following NFA N accepts 
L(r). 

 
 
 
 
 
 
 
 
 

 

Formally, where for or  

 

Induction : 

 

Assume that the start of the theorem is true for REs and . Hence we can assume that we 

have automata and that accepts languages denoted by REs and , respectively i.e. 

and . The FAs are represented schematically as shown below. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Each has an initial state and a final state. There are four cases to consider. 

 

 Case (i) : Consider the RE  denoting the language  . We 

construct FA  , from  and  to accept the language denoted by RE  as follows 

: 



 
 
 
 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Create a new (initial) start state and give - transition to the initial state of  and 

.This is the initial state of . 

 

 Create a final state  and give  -transition from the two final state of  and  .  

is the only final state of  and final state of  and  will be ordinary states in  

. 


 All the state of  and  are also state of  . 

 All the moves of  and  are also moves of  . [ Formal Construction] 
 
 
It is easy to prove that 

 

Proof: To show that we must show that 

 

=  

 

= by following transition of . 

 

Starts at initial state and enters the start state of either or following the transition i.e. 

without consuming any input. WLOG, assume that, it enters the start state of . From this point 
 

onward it has to follow only the transition of to enter the final state of , because this is the 

only way to enter the final state of M by following the e-transition.(Which is the last transition & no 

input is taken at hte transition). Hence the whole input w is considered while traversing from the 
 

start state of to the final state of . Therefore must accept . 



  
 
 

 

Say, or . 
 
 
WLOG, say 

 

Therefore when process the string w , it starts at the initial state and enters the final state 

when w consumed totally, by following its transition. Then also accepts w, by starting at 

state and taking -transition enters the start state of -follows the moves of to enter 

the final state of consuming input w thus takes -transition to . Hence proved. 

 

 Case(ii) : Consider the RE  denoting the language  . We construct 

FA   from  &  to accept  as follows : 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Create a new start state and a new final state 

 

1.  Add - transition from  

o to the start state of   
 

o to   
 

o final state of  to the start state of   
 

2. All the states of  are also the states of  .  has 2 more states than that of  

namely  and  .  

3. All the moves of  are also included in  .  
 
 

By the transition of type (b), can accept . 

By the transition of type (a), can enters the initial state of w/o any input and then follow all 



 
 

 
 
 

 

kinds moves of to enter the final state of and then following -transition can enter . Hence 

if any is accepted by then w is also accepted by . By the transition of type (b), strings 

accepted by can be repeated by any no of times & thus accepted by . Hence  accepts 

and any string accepted by repeated (i.e. concatenated) any no of times. Hence 

 
 

 

 Case(iv) : Let  =( ). Then the FA  is also the FA for ( ), since the use of 

parentheses does not change the language denoted by the expression. 


iv) Conversion of Finite Automata to Regular Expression by Elimination  
 

of States 
 

In this method, all intermediate states are eliminated in a systematic order. The 

principle is explained below. Consider a state „s‟ to be eliminated. Let „p‟ be its successor 

and „q‟ be its predecessor as shown: 

 

a b 
 
 

 

c 
 
 
 
It can be observed that all strings of the form ac*b take the automata from q to p and pass through 

s. now, s can be removed and we can attach an edge labeled ac*b from q to p directly. 

 
 

ac*b 
 
 
 
 
During this process, we obtain transitions labeled by regular expressions. Such diagrams 

are called „Generalized transition diagrams‟. The general rule can be described as below. 

If a state „s‟ is to be eliminated, we have to consider each pair of a predecessor and a 

successor (q,p). consider the general situation as given below. 
 

R T 

 S 

   



  

  
  

 
 
 
 
 

After elimination of „s‟, we attach a direct edge labeled by R1+RS*T as shown below. 
 
 

 

R1+RS*T 
 
 

 

By this process, we eliminate all intermediate states leaving the start state and a final 

state. Configuration at the end is one of the following patterns. 

 
 

     R1     
 

          
 

          
 

          
 

     

R2 

 

S 

  
 

    

  

  
 

 
R 

  
 

       
 

Regular expression in this case is (R+R*R1S*R2)* R1S* or (R*R1S*(R2R*R1S*)* 
 

 
 
 

 

R 
 
 
In this case, the regular expression is R*. 
 
 

 

Limitations of Finite Automata and Non regular Languages : 

 

The class of languages recognized by FA s is strictly the regular set. There are certain 

languages which are non regular i.e. cannot be recognized by any FA 

 

Consider the language  



 
 
 
 

 
In order to accept is language, we find that, an automaton seems to need to remember when passing 

the center point between a's and b's how many a's it has seen so far. Because it should have to 
 
compare that with the number of b's to either accept (when the two numbers are same) or 

reject (when they are not same) the input string. 
 

But the number of a's is not limited and may be much larger than the number of states 

since the string may be arbitrarily long. So, the amount of information the automaton need 

to remember is unbounded. 

 
A finite automaton cannot remember this with only finite memory (i.e. finite number of states). The 

fact that FA s have finite memory imposes some limitations on the structure of the languages 

recognized. Inductively, we can say that a language is regular only if in processing any string in 

this language, the information that has to be remembered at any point is strictly limited. The 
 

argument given above to show that is non regular is informal. We now present a 

formal method for showing that certain languages such as are non regular. 

 

Pumping Lemma for regular languages 

 

In the theory of formal languages, a pumping lemma states that any language of a 

given class can be "pumped" and still belong to that class. A language can be pumped if any 

sufficiently long string in the language can be broken into pieces that can be repeated to 

produce an even longer string in the language. Thus, if there is a pumping lemma for a given 

language class, any language in the class will contain an infinite set of finite strings all 

produced by a simple rule given by the lemma. The two most important examples are the 

pumping lemma for regular languages and the pumping lemma for context-free languages. 

Unlike theorems, lemmas are specifically intended to facilitate streamlined proofs. These two 

lemmas are used to determine if a particular language is not in a given language class. 

However, they cannot be used to determine if a language is in a given class, since satisfying 

the pumping lemma is a necessary, but not sufficient, condition for class membership. 

 

Pumping Lemma : 
 

Let L be a regular language. Then the following property olds for L. 

 

There exists a number (called, the pumping length), where, if w is any string in L of length at 
 

least k i.e. , then w may be divided into three sub strings w = xyz, satisfying the 

following conditions: 

 

1.  i.e.  
 

 



  

  
  

 
 

2. 
 

3. 

 

Proof : Since L is regular, there exists a DFA that recognizes it, i.e. 

L = L(M) . Let the number of states in M is n. 

 

Say,  

 

Consider a string such that (we consider the language L to be infinite and hence such  
a string can always be found). If no string of such length is found to be in L , then the 

lemma becomes vacuously true. 

 

Since . Say while processing the string w , the DFA M 

goes through a sequence of states of states. Assume the sequence to be 

 
 
 
 
 
 
 
 
 

 

Since , the number of states in the above sequence must be greater than n + 1. But number of 

states in M is only n. hence, by pigeonhole principle at least one state must be repeated. 

 

Let qi and ql be the ql same state and is the first state to repeat in the sequence (there 

may be some more, that come later in the sequence). The sequence, now, looks like 

 
 
 
 

which indicates that there must be sub strings x, y, z of w such that 
 
 
 
 
 
 
 
 

x y 
z  

 
 

q q q 
 

0 i m 
 



 
 

 
 
 

 

This situation is depicted in the figure 

 

Since is the first repeated state, we have, and at the same time y cannot be empty 
 

i.e . From the above, it immediately follows that . Hence . 

Similarly, 

 

implying  

implying  

 
and so on. 

 

That is, starting at the loop on state can be omitted, taken once, twice, or many more 

times, (by the DFA M ) eventually arriving at the final state 

 

Thus, accepting the string xz, xyz, xy2z,... i.e. xyiz for 

all  Hence . 

We can use the pumping lemma to show that some languages are non regular. 

 

Pumping Lemma 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Application of Pumping Lemma 



 
 
 
 

 

Example 1: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 2: 



 
 
Example 3: 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 4: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



  
 
 

 

Example 5: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Applications of Finite state automata 
 

 

i) Lexical Analyzers 

 

In computer science, lexical analysis is the process of converting a sequence of 

characters into a sequence of tokens. Programs performing lexical analysis are called 

lexical analyzers or lexers. A lexer is often organized as separate scanner and 

tokenizer functions, though the boundaries may not be clearly defined. 

 
Lexical grammar 

 

The specification of a programming language will include a set of rules, often expressed 

syntactically, specifying the set of possible character sequences that can form a token or 

lexeme. The whitespace characters are often ignored during lexical analysis. 

 
Token 

 

A token is a categorized block of text. The block of text corresponding to the token is 

known as a lexeme. A lexical analyzer processes lexemes to categorize them according 

to function, giving them meaning. This assignment of meaning is known as tokenization. 

A token can look like anything: English, gibberish symbols, anything; it just needs to be a 

useful part of the structured text. 

 
Tokenizer 



 
 
 
 
 
 
 

 

Tokenization is the process of demarcating and possibly classifying sections of a string of input characters. The resulting 

tokens are then passed on to some other form of processing. The process can be considered a sub-task of parsing input. 

 

Lexical analyzer generators 
 

 Flex - Alternative variant of the classic 'lex' (C/C++). 

 JLex - A Lexical Analyzer Generator for Java. 

 Quex - (or 'Queχ') A Mode Oriented Lexical Analyzer Generator for C++. 

 OOLEX - An Object Oriented Lexical Analyzer Generator. 

 re2c 

 PLY - An implementation of lex and yacc parsing tools for Python. 


ii) Text Search  
 

String searching algorithm (text searching) 

 

String searching algorithms, sometimes called string matching algorithms, are an important class of 

string algorithms that try to find a place where one or several strings (also called patterns) are found within a larger string or text. 

 

Let Σ be an alphabet (finite set). Formally, both the pattern and searched text are concatenations of elements of Σ. The Σ may be a 

usual human alphabet (for example, the letters A through Z in English). Other applications may use binary alphabet (Σ = 

{0,1}) or DNA alphabet (Σ = {A,C,G,T}) in bioinformatics. 

 

In practice how the string is encoded can affect the feasible string search algorithms. In particular if a variable width encoding is 

in use then it is slow (time proportional to N) to find the Nth character. This will significantly slow down many of the more 

advanced search algorithms. A possible solution is to search for the sequence of code units instead, but doing so may produce false 

matches unless the encoding is specifically designed to avoid it. 



 

 

 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
 
 

 

Introduction Push Down Automaton 
 

In the case of finite automata, several languages cannot be recognized by them. 

Some important programming constructs involving nested structures are beyond the 

capacity of finite automata. Normally regular languages are accepted by finite automata 

and Pushdown Automata are used to recognize Context Free Language. 

 
It is observed that FA has limited capability. (in the sense that the class of languages 

accepted or characterized by them is small). This is due to the "finite memory" (number of states) 

and "no external memory" involved with them. A PDA is simply an NFA augmented with an "external 

stack memory". The addition of a stack provides the PDA with a last-in, first-out memory 

management capability. This "Stack" or "pushdown store" can be used to record potentially 

unbounded information. It is due to this memory management capability with the help of the stack 

that a PDA can overcome the memory limitations that prevents a FA to accept many 
 

interesting languages like . Although, a PDA can store an unbounded amount 

of information on the stack, its access to the information on the stack is limited. It can 

push an element onto the top of the stack and pop off an element from the top of the 

stack. To read down into the stack the top elements must be popped off and are lost. 

Due to this limited access to the information on the stack, a PDA still has some 

limitations and cannot accept some other interesting languages. 

Consider the problem of recognition of the context-free language L={a
n
b

n
/n>=0}. The a‟s 

in the given string are added to the stack. When a symbol „b‟ is encountered in the input string, 

an „a‟ is removed from the stack. Thus the matching of number of „a‟s and „b‟s is accomplished. 

This type of arrangement where a finite automaton has a stack leads to the generation of a 

“Pushdown Automaton” (PDA). Pushdown automation is an extension of the NFA. 



 
 
 
As shown in figure, a PDA has three components: an input tape with read only head, a 
finite control and a pushdown store. 
 
The input head is read-only and may only move from left to right, one symbol (or cell) at 

a time. In each step, the PDA pops the top symbol off the stack; based on this symbol, 

the input symbol it is currently reading, and its present state, it can push a sequence of 

symbols onto the stack, move its read-only head one cell (or symbol) to the right, and 

enter a new state, as defined by the transition rules of the PDA. 

 
PDA are nondeterministic, by default. That is, - transitions are also allowed in which the 

PDA can pop and push, and change state without reading the next input symbol or moving 

its read-only head. Besides this, there may be multiple options for possible next moves. 

 

 

Pushdown Automata 
 

Basic model of PDA consists of 3 components:  
vi) an infinite tape   
vii) a finite control   
viii) a stack   

Now let us consider the „concept of PDA‟ and the way it „operates‟.  
 
 
 

 

Input Tape 
 

Read-write Head 
 
 

 

Finite 

Control 

 

Stack 
 
 
 
 
 
 
 

Each move of a PDA depends on the current state, input symbol and top of stack symbol. 

The finite control reads the input from the input tape, and same time it reads the symbol from stack 

top. It depends on finite control. The stack is also called „Pushdown Store‟. It is a read- 



 
 
 

 

In this representation, there is a node for each state. A transition (qi,a,A)=(qj,) is represented by an edge from 

qi to qj and labeled by a,A/ 

 

Eg: Construct a PDA to recognize the language L={a
n

b
n

/n>=1} Solution: PDA can be defined 

as M=(Q,,Ґ,,q0,Z0,F). For this PDA, 

Q={q0,q1,q2} ={a,b} Ґ={Z0,A} can be defined as follows: 

= (q0,a,Z0)=(q0,AZ0)   
= (q0,a,A)=(q0,AA)   
= (q0,b,A)=(q1,є)   
= (q1,b,A)=(q1,є)   
= (q1,є ,Z0)=(q2,є)  

 

Now M can be defined as M=({q0,q1,q2},{a,b},{Z0,A},,q0,Z0,q2). The description of PDA by using Transition table and 

Transition diagram is as follows: 
 

By using transition table: 
 

State TOS symbol a b  
 

  Z0 (q0,AZ0) --- --- 
 

q0      
 

  A (q0,AA) (q1,) --- 
 

q1 
 A --- (q1,) --- 

 

     
 

  Z0 --- --- (q2,) 
 

  a,Z0/AZ0    
 

 

q 

b,A/ ,Z0/ 

q 

 
 

  q  
 

 0  1 2  
 

  
a,A/AA 

B,A/   
 

     
 



 

  
 
 

 

Example 2 : We give an example of a PDA M that accepts the set of balanced 

strings of parentheses [] by empty stack. The PDA M is given below. 

 

where is defined as 
 
 
 
 
 
 
 
 
 
 

 
Informally, whenever it sees a [, it will push the ] onto the stack. (first two transitions), and whenever 

it sees a ] and the top of the stack symbol is [, it will pop the symbol [ off the stack. (The third 

transition). The fourth transition is used when the input is exhausted in order to pop z off the stack ( 

to empty the stack) and accept. Note that there is only one state and no final state. 

 
The following is a sequence of configurations leading to the acceptance of the string [ [ ] [ ] ] [ ] 
 
 
 
 

 

 
 
 
 

 

Deterministic and nondeterministic PDA 
 

A PDA is deterministic if there is never a choice of move in any situation. If (q,a,A) 

contains more than one pair, then surely the PDA is non deterministic because we can choose 

among these pairs when deciding on the next move. However even if (q,a,A) is always a 

singleton, we could still have a choice between using a real input symbol or making a move on 

є. Thus we define a PDA as 

P=(Q,,Ґ,,q0,Z0,F) to be deterministic if and only if the following conditions are met: 

1. (q,a,A) has at most one member for any q in Q, a in  or a= є and A in Ґ.   

2. (q,a,A) is nonempty, for some q in Q, a in  then (q,є,A) must be empty.   

Unlike finite automaton DPDA allows є-transition. But if for any combination (q,A), є-

transition is present, transition on any other symbol is not allowed. 
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 can be defined as: 

 

 : Q x (Uє) x Ґ   Q x Ґ* 

 
 

eg:- for DPDA {wcw
R
/wє{0,1}*} 

for NPDA {ww
R

/wє{0,1}*} 

In the first one we cannot determine when to switch over from „pushing state‟ 

to „matching state‟. In the second one PDA cannot determine whether to push A or 

pop A while scanning 0‟s. Hence a choice is necessary.  
Here 

 

 is be defined as: 
 

 : Q x (Uє) x Ґ   2
(Q x

 
Ґ*)

 

 
 
 

Example 1: Construct a PDA that accepts the language . 
 
 
 
 
 
 
 
 
 
 

, and consists of the following transitions 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The PDA can also be described by the adjacent transition diagram. 
 
 
 
 
 



  

  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Informally, whenever the PDA M sees an input a in the start state with the start symbol z 

on the top of the stack it pushes a onto the stack and changes state to . (to remember that it has 

seen the first 'a'). On state if it sees anymore a, it simply pushes it onto the stack. 
 

Note that when M is on state , the symbol on the top of the stack can only be a. On state if it 

sees the first b with a on the top of the stack, then it needs to start comparison of numbers of a's 
 
and b's, since all the a's at the beginning of the input have already been pushed onto the stack. 

It start this process by popping off the a from the top of the stack and enters in state q3 (to 

remember that the comparison process has begun). On state , it expects only b's in the input (if it 

sees any more a in the input thus the input will not be in the proper form of a
n
b

n
). Hence there 

 

is no more on input a when it is in state . On state it pops off an a from the top of the stack  

for every b in the input. When it sees the last b on state q3 (i.e. when the input is exhausted), 

then the last a from the stack will be popped off and the start symbol z is exposed. This is the 
 

only possible case when the input (i.e. on -input) the PDA M will move to state 

which is an accept state. 
 
We can show the computation of the PDA on a given input using the IDs and next move 

relations. For example, following are the computation on two input strings. 

 
Let the input be aabb. we start with the start configuration and proceed to the 

subsequent IDs using the transition function defined 

 

( using transition 1 ) 

 

( using transition 2 ) 
 
 
 
 

 



  
 
 

 

( using transition 3 ) 

 

( using transition 4 ) 

 

( using transition 5 ) 

 

is final state. Hence ,accept. So the string aabb is rightly accepted by M. 

 

we can show the computation of the PDA on a given input using the IDs and next move 

relations. For example, following are the computation on two input strings. 

 

i) Let the input be aabab. 
 
 
 
 
 
 
 
 
 
 
 
 
No further move is defined at this point. 

 

Hence the PDA gets stuck and the string aabab is not accepted. 

 

Example 2: The language is a DCFL . The following DPDA accepts L 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
The moves satisfying the conditions is given in the definition. As the PDA reads the first half 

of the input, it remains in the start state q0 and pushes the input symbols on the stack. When it reads 

the symbol it changes the state from q0 to q1without changing the stack. On state q1 it simply 

matches input symbols with the stack symbols and erases in case of a match. The moves satisfying 

the conditions is given in the definition. As the PDA reads the first half of the input, it remains in the 

start state q0 and pushes the input symbols on the stock. When it reads the symbol , it changes 

the state from q0 to q1 without changing the stock. On state q1 it simply matches 
 

input symbols with the stock symbols and erases in case of a match. That is, the symbol in  

tells the m/c when to start looking for Once the input is extended, then the symbol z0 on stock 

indicates a proper match for the input to be and hence it accepts by entering state 

q2, which is a final state. 

 

Example 3: Consider the language . In this case there is no way to 

determine when to start comparison because of absence of the symbol in the middle/ The 

PDA in this case has to guess non-deterministically when the middle symbol comes in the input. 

 

DPDA s and FAs: DCFL s and Regular languages 

 
Equivalence of DFA & NFA proves that non determination does not add power in case of FA s. 

But it is not true in case of PDA s, i.e., it can be shown that nondeterministic PDA s are more 

powerful than DPDA s. In fact, DCFL s is a class of languages that lies properly between the 

class of regular languages and CFL s. The following discussion proves this fact. 

 

Theorem :If L is a regular language, then there is some DPDA M such that . 

 

Proof : Since L is regular, then exists a DFA D such that . 

 
The PDA M can be constructed from D (with an additional stock) that simulates all the moves of 
 

D on any input just by ignoring its stock. That is if 

when Such that It is easy to see that 

 
 
 
 
 
 
 
 
 
 
 
 



 

 

Again, the language can be shown to be non-regular by using pumping 

lemma. But, the DPDA presented in the example above accepts this language. 

Hence the class of DCFL s properly includes the class of regular languages. 

 

Context free grammar 
 

A grammar is nothing but a set of rules to define valid sentences in any languages. 

Context free Grammar (CFG) is the most important class of languages in practical applications. 

They are used in compilers, text formatters and natural language processing etc. 
 

Definition 
 

A CFG can be defined as G=(V,T,P,S) where V is the set of non terminals, T is 

the set of terminals, S is the start symbol and P is the set of productions of the form A  

where AV, (VUT)*. Productions with same LHS are clubbed together. ie, if  

A 1 

A 2 

A 3  
---  
---  
---  
A  n  then we can write   A  1/2/3/………/n  

CFG derive their name from the fact that the substitution of the variable on the left of a 

production can be made at any time, such a variable appears in the sentential form. It does not 

depend on the symbols in the rest of the sentential form. ie, the contexts. This feature is the 

consequence of allowing only a single variable on the left side of the production. 
 

If a CFG is given, we can infer whether a string „w‟ can be generated by G wither 

by deriving „w‟ from S or S from „w‟. Former one is called “derivation” and latter 

procedure is called “recursive inference”. 
 

 

Leftmost and Rightmost Derivations  
In CFG, at each step, one non terminal is replaced by its RHS. In general, they 

can be replaced in any order. But, there are 2 systematic derivations, a) Leftmost 

derivation b) Rightmost derivation.  
In leftmost derivation, at each step, leftmost non terminal is replaced by its RHS. 

The symbol ==> is used to denote leftmost derivation. The corresponding sentential 

form is called “left sentential form”. 



 
 

 

In rightmost derivation, at each step, rightmost non terminal is replaced by its RHS. The 

symbol ==> is used to denote rightmost derivation. The corresponding sentential form is called 
 
“right sentential form”.  
Eg: Let regular expression (a+b)(a+b+0+1)*  

Regular grammar to specify the expression is:  
E  E+E/ E-E/ E*E/I 

 
I  Ia/Ib/I0/I1/a/b  

Let w=a11*b+a  
Leftmost derivation Rightmost derivation 

 

E==>E+E E==>E+E  
==>E*E+E ==>E+I  
==>I*E+E ==>E+a  
==>I1*E+E ==>E*E+a  
==>I11*E+E ==>E*I+a  
==>a11*E+E ==>E*b+a  
==>a11*I+E ==>I*b+a  
==>a11*b+E ==>I1*b+a  
==>a11*b+I ==>I11*b+a  
==>a11*b+a ==>a11*b+a 

 

Derivation tree (Parse tree)  
The derivation in a CFG can be represented by using trees called „derivation tree‟ 

or „parse tree‟. A derivation tree for a CFG is a tree satisfying the following :  
i) every vertex has a label which is a variable (non terminal) or terminal.   
ii) The root has label which is non terminal   
iii) The label of an internal vertex is a variable.   

ie, a derivation tree is a labeled tree in which each internal node is labeled by a non 

terminal and leaves are labeled by terminals. Strings formed by labels of the leaves traversed 

from left to right is called the „yield of the parse tree‟. Ie, the yield of a derivation tree is the 

concatenation of the labels of the leaves without repetition in the left-to-right ordering. 
 
Eg: Let G=({S,A},{a,b},P,S) where P is defined 

as S aAS/a  
A  SbA/ba/SS  
Show that S=*=>aabbaa and construct a derivation 

tree. Solution 

S aAS 

aSbAS 



 
 
 
 
 

aabAS 

aabbaS  
aabbaa  (by leftmost derivation) 

 
 
 
 
 

 

S 
 
 
 
 
 
 

a A S 
 
 
 

 

a 
 

S b   A 

 

a 
b a  

 
 

 
 
 
 

 

Ambiguity in CFGs  
It is possible that a sentence might have 2 different parse trees with respect a 

given grammar G. a CFG G is said to be ambiguous if there is a sentence which has 

more than one parse tree. ie, the same terminal string may be the yield of 2 parse trees.  
A terminal string wL(G) is ambiguous if there exists 2 or more derivation trees for w.  

Eg:S  S+S S  S*S 
 

a+S S+S*S  
a+S*S a+S*S 

 
a+a*S a+a*S  
a+a*b a+a*b 



 
 
 

 
Ambiguity is basically the property of the grammar and not the language. Same language 

may have more than one grammar. Some are ambiguous and others are unambiguous. 

Unambiguous grammar for the above 

a*b+b is E E+T/T  
T T*I/I I 

Ia/Ib/a/b 

 

However, there exists language for which every grammar is ambiguous. Such 

languages are termed “inherently ambiguous”. A language L is said to be inherently 

ambiguous if every grammar for it is ambiguous. 

 
Simplification of CFGs  

Here there are some procedures for producing equivalent, but simpler 

grammars for a given grammar. Major steps are  
i) Removal of useless symbols(non terminal)   
ii) Removal of unit productions   
iii) Removal of (null) productions  

 

(i) Removal of useless symbols(non terminal)  
Here we are going to identify those symbols which do not play any role in the 

derivation of any string „w‟ in L(G). These symbols are called useless symbols. And then 

eliminate the identified production, which contains useless symbols, from the CFG.  
A symbol in CFG is useful if and only if  

a) Y=*=>w, where wL(G) and w is in T*. ie, Y leads to a string of terminals. Here Y is 

said to be “generating”.  
b) if there is a derivation S=*=> Y=*=>w where wL(G) for some ,; then Y is said 

to be “reachable”.  
So surely a symbol that is useful will be both generating and reachable. 

Therefore the simplification of CFG involves the following steps.  
i) Identify non-generating symbols in the given CFG and eliminate those 

productions which contain non generating symbols.   
ii) Identify non-reachable symbols in the grammar and eliminate those productions   

which contain non reachable symbols.  
After this process, CFG will have only useful symbols. 

Eg: Remove useless symbols from the following grammar 

S AB/a 

A b  
Solution: 



 
 

 

Here B is a non generating symbol. Since B is not deriving any terminals. So eliminate 

S AB from CFG. So we get,  
S a 

A b  
Here A is a non reachable symbol, since it cannot be reached by starting non-terminal 

S. so we can eliminate A b, and now the reduced CFG is 

 

S  a 
 
 
 

(ii) Removal of unit production 
 

A production of the form non-terminal one non-terminal ie a production of the 

form A B is called “unit production”. Following algorithm can be used to eliminate the 

unit production. 

 

Algorithm 

 

While(there exists a unit production, A  B)  
{  

select a unit production A B, such that there exist a production B , 

where  is a terminal.  
for(every non-unit production B  )  

add a production A  to the grammar 

eliminate A B from the grammar  
}  
eg: Remove unit productions from the 

CFG S AB  

A a B 

C/b C D 

D E E a 

Solution:  
Here unit productions are  

B  C  
C  D 
 
D  E 
 
 
 
 
 



 
 

 

Here we cant remove the production B C since C D; ie, D is not a terminal. Similar is the case for C D since D E. But 

for D E, this can be eliminated since there is a production E a. Therefore this can be changed to the production D a. so the 

grammar becomes,  

S AB A a 

B C/b C 

D D a E a 
 
 

 

Now we can remove C D by D a, it becomes C a Therefore, 
 

S AB A a 

B C/b C a 

D a E a 
 
 

 

B C, C a ==>B a Therefore, 
 
 

S  AB 

A  a 

B  a/b 

All others are useless. So this is the reduced grammar. 

 

(ii) Removal of  (null) production  

We have to eliminate productions of the form A Є, which are called Є-productions. If Є is in L(G), we cannot eliminate all 

Є-productions from G, but if Є is not in L(G), we can eliminate all Є-productions from G. 
 

In a given CFG, we call a non-terminal N nullable if there is a 

production N Є or 

there is a derivation that starts at N and leads to Є ie, N==> Є 

To eliminate Є-productions from a grammar G we use the following technique.  

If A Є is a production to be eliminated then we look for all productions, whose right side contains A, and replace each 

occurrence of A in each of these productions to obtain the non Є-productions. Now these resultant non Є-productions must be 

added to the grammar to keep the language generated the same. 
 
 
 

 



 

 

eg: S aA A 

b/ Є 

 

Solution:  
Here A Є is Є-production. Put Є in place of A at right side of productions and add 

the resulted productions to the grammar. So we get,  
S  a  
Now add this new productions to keep the language generated by this grammar 

same. Therefore, 

S aA 

S a A 

b  
Normal Forms for CFGs  

There are two important standard forms for CFGs:  
i) Chomsky Normal Form(CNF)   
ii) Greibach Normal Form(GNF)   

For any CFG, we can construct equivalent grammars in CNF and GNF. 
 
 
 

Chomsky normal form 

 

Any non-empty context-free language without ε, has a grammar G all of whose 

productions are of the form  
1. A → BC, or   
2. A → a   
Furthermore, G has no useless symbols. 
Note: If the language has ǫ, then we can get an “almost” Chomsky Normal Form 

grammar for it, by adding the rule S′ → S|ε to it. 

 

Preliminary Ideas 
 
Given a grammar G = (V, T, S, P), we need to produce a grammar G1 that is in 

Chomsky Normal Form.  
Let G′ = (V ′, T, S, P′) be the grammar obtained after eliminating ε -productions, unit 

productions, and useless symbols from G.  
If A → x is a rule of G′, where x Є V ′ U T, then x Є T, because G′ has no unit 

productions. So A → x is in correct form. 



 
 

 

All remaining productions are of form A → X1X2 ・ ・ ・Xn where Xi Є V ′ U T, n ≥ 2. We 

will put these rules in the right form by applying the following two transformations:  
1. Make all the bodies of these rules to consist only of variables   
2. Make all the right hand sides of length 2.  

 

Removing Terminals from Long Bodies 
 
Let A → X1X2 ・ ・ ・Xn with Xi being either a variable or a terminal. We want have rules 

where all the Xi are variables.  
Consider A → BbCdefG. How do you remove the terminals?  
Solution: For each a, b, c . . . Є T add variables Xa,Xb,Xc, . . . with productions Xa → a, Xb → b, .  
. .. Then replace the production A → BbCdefG by A → BXbCXdXeXfG 

 

Reducing right-hand sides to length 2 
 
Now all productions are of the form A → a or A → B1B2 ・ ・ ・Bn, where n ≥ 2 and Bi is a 

variable.  
How do you eliminate rules of the form A → B1B2 . . .Bn where n 

> 2? Replace the rule by the following set of rules  
A → B1B(2,n)  
B(2,n) → B2B(3,n)  
B(3,n) → B3B(4,n)  
...  
B(n−1,n) → Bn−1Bn  
where B(i,n) are “new” variables. 

 

Example 1:  
Convert: S → aA|bB|b, A → Baa|ba, B → bAAb|ab, into Chomsky Normal Form. 

 

Step 1: Eliminate ǫ-productions, unit productions, and useless symbols. 
 

This grammar is already in the right form. 

 

Step 2: Remove terminals from the bodies of long rules. New grammar is:  
Xa → a, Xb → b, S → XaA|XbB|b, A → BXaXa|XbXa, and B → XbAAXb|XaXb 

Step 3: Reduce the right-hand side of rules to be of length at most 2.  
New grammar replaces A → BXaXa by rules A → BXaa, Xaa → XaXa, 

and B → XbAAXb by rules B → XbXAAb, XAAb → AXAb, XAb → AXb 



 
 
 
 
 
 

 

Example 2: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 3: Consider the CFG: generating the language . 

we will construct a CNF to generate the language i.e. . 

 

 Solutions : We first eliminate  -productions ( generating the language  )  

using the procedure already described to get .  
 Step  1  :  Introduce  nonterminals  A,  B  and  replace  these  productions  with 

 
 

 Step 2 : Introduce nonterminal C and replace the only production  

(which is not allowable form in CNF) with  and  

 The final grammar in CNF is now 



 
 

 
 
 

 

 S AC|AB C 
SB 

A a 
B b 

 
 
 
 
 
 
 
 
 
 
 

 

Greibach normal form 

 

In computer science, to say that a context-free grammar is in Greibach normal form (GNF) means that all production 

rules are of the form: 
 

or 

 

where A is a nonterminal symbol, α is a terminal symbol, X is a (possibly empty) sequence of nonterminal symbols not including the start 

symbol, S is the start symbol, and λ is the null string. 
 

Observe that the grammar must be without left recursions. 

 

Every context-free grammar can be transformed into an equivalent grammar in Greibach normal form. (Some definitions do 

not consider the second form of rule to be permitted, in which case a context-free grammar that can generate the null string 

cannot be so transformed.) This can be used to prove that every context-free language can be accepted by a non-deterministic 

pushdown automaton. 

 

Given a grammar in GNF and a derivable string in the grammar with length n, any top-down parser will halt at depth n. 

 

Greibach normal form is named after Sheila Greibach. 
 

Example : A BB B AC | a C AB | BA | a . We will construct an equivalent CFG in GNF. 

 

Step 1: Renaming the nonterminal, we get 
 
 

 



 
 
 
 
 
 
 
 
 

 

Step 2 : -productions already satisfy 

INP. Process - and -productions to 

enforce the INP. First consider -productions: 

Apply lemma 2 to obtaining . Now apply lemma 1 to eliminate 

left-recursion 

 
We get 
 
 
 
 
 

 

which satisfy the INP property. 

The resulting grammar is 

 
 
 
 
 
 
 
 

Next consider -productions. Applying lemma 2 to we get 
 
 
 
 
 

Applying lemma 2 again on the first two -productions above we get 
 
 
 
 
 
 
 
 
 



 
 
 

 

Now, all productions satisfy the INP. 

 

The resulting grammar is: 
 
 
 
 
 
 
 
 
 

 

Step 3 : All -productions and -productions are already in GNF. Apply 

lemma 2 to -productions, to get . 

 

Similarly, applying lemma 2 to -production we get 
 
 
 

 

All the productions are in GNF now. So, the resulting equivalent grammar in GNF is 
 
 
 
 
 
 
 
 
 
 

Pumping Lemma for Context free languages 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Example 1 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

 

Applications of PDA – Parsing 
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Bottom-up Parsing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
 

 

Introduction to Turing Machine  
Neither Finite Automata(FA) nor Pushdown Automata(PDA) can be regarded as 

truly general models for computers, since they are not capable of recognizing some type 

of languages, such as {a
n
b

n
c

n
/n>=0}. So the next model of automata is Turing Machine.  

In 1930‟s several mathematicians began to think about what it means to be 

able to compute a „function‟. Alan M. Turing and Alenzo Church arrived at same 

conclusion: “a function is computable if it can be computed by a Turing machine”.  
Alan Turing proposed the Turing Machine as a model of „any possible 

computation‟. Turing Machines are more powerful than PDA. This can do general 

purpose computations. Church –Turing thesis that claims that there exists no 

model of computation which is more powerful than the Turing Machine. 
 

Turing Machine  
Basic model of a Turing machine consists of 

ix) a two way infinite tape,  
x) a read/write head and  
xi) a finite control.  

 
 
 
 

Input Tape 
 

Read Write Head 
 
 

 

Finite 

Control 
 
 
 
 
 
 

At any time, action of a Turing machine depends on the current state and the 

input symbol and involves (i) change of state (ii) writing a symbol in the cell scanned 

(iii) head movement to the left or right and (iv) Turing machine halts or not halts. A 

Turing machine may utilize the tape cells beyond the input limits and „Blank‟ cell 

plays a significant role in the working of a Turing machine. Turing machine halts in 

any situation for which a transition is not defined. Unlike the previously dealt 

automata, it is possible that a Turing machine may not halt. At any state a Turing 

machine can halt or not halt. ie, it ends in accepting state if it successfully 

halts(accept halt). Otherwise it halts in any non accepting state (reject halt). 
 
 
 
 

 



 4.2 
 

 

Formal Definition  

A Turing machine can be formally defined as M=(Q,,Ґ,,q0,B,F) 
 

All symbols are same except that Ґ,,B. Here Ґ is a finite non empty set of tape symbols or tape alphabets, B is the 

special blank symbol and B Є Ґ and  is the transition function defined as, 
 

 : Q x Ґ   Q x Ґ x {L,R} 
 

{L,R} represents the movement of the head. 
 

Language Acceptance by Turing Machine 

A string w is accepted by a Turing machine if q0w |--*-- 1q2 for some ‘q’ in F. 
and 1,2 Є Ґ*, and Turing machine has no further move.  

M does not accept ‘w’ if the machine M either halts in non accepting state or does not halt. Language 

accepted by a Turing machine is defined as 

L(M)={wq0w |--*--1q2 for some q in F and there is no further move} 
 

 

Representation of a Turing Machine 

We can describe a Turing machine using 
(iii) instantaneous descriptions using move relations   

Instantaneous Description (ID) in PDA was in terms of current state, input string to be processed, and 

topmost symbol of PDS. But in Turing machine the R/W head can move to the left also. So ID of a Turing machine is 

defined in terms of the entire input string and current state. During a specific execution, configuration of the Turing 

machine decides further behavior consists of (i) state (ii) non-blank portion of the tape content to the left of the head 

(iii) non-blank portion of the tape content to the right of the head. This 
is called instantaneous description (ID) and is represented by 1q2. The head reads the  

leftmost symbol of 2. If 2 is empty, the head scans ‘B’. Each move changes the Turing machine from one ID to another. The 

symbol |-- is used to represent the move. |--*-- represents ‘sequence of moves’ or ‘reflexive transitive closure’ of the relation |--- 
 

Let (q,xi)=(p,y,R) then 

x1x2……….xi-1 q xi…..xn  |--- 

x1x2……….xi-1 y p xi+1…..xn 
 

(iv) transition table  

We give the definition of  in the form of a table called the transition table. If (q,a)=(,,), we write  

under a-column and q-row. So if we get  in the table, 



 
 
 
means that  is written in the current cell,  gives the movement of the head (L/R), and  denotes the new state into which Turing 

machine enters. 
 

Eg:    

Present state Tape symbols   

 0 1 b 

q1 0Rq1  1Lq2 

q2 0Lq2 1Lq2 bRq3 
    

q3 bRq4 bRq5  
    

q4 0Rq4 1Rq4 0Rq5 
    

*q5   0Lq2 
     

(iii)  transition diagram 

In the transition diagram the labels are triples of the form (,,) where , Є Ґ and  Є {L,R}. When there is a 

directed edge from qi to qj with label (,,), it means 
that (qi, )=(qj, , ). 

During the processing of an input string, suppose the Turing machine enters qi and R/W head scans the present symbol . 

As a result, the symbol  is written in the cell  

under R/W head. The R/W head moves to the left or right, depending on , and the new state is qj. 

Ie, 
 

(,,) 

qi         qj 

 

eg: 
Design a Turing machine to recognize all strings consisting of even number of 1’s. Solution: (i) q1 is the initial state. M enters state q2 on 

scanning 1 and writes b. 
3) If M is in state q2 and scans 1, it enters q1 and writes b.   
 q1 is the only accepting state.   

So M accepts a string if it exhausts all input symbols and finally in state q1. Symbolically, 
 
M=({q1,q2},{1},{1,b}, , q1,b,{q1}) Where  is defined 

by 
 

 

Present state Input symbols  

 1 B 

*q1 XRq2 BLq1 

q2 XRq1  
   



  
 

 

Let us obtain the computation sequence of 1111. Thus 

q11111B |-- X q2 111B |-- XX q111B |-- XXX q21B |-- XXXXq1B |-- 

XXXq1XB As q1 is accepting state. 1111 is accepted. 
 
 

 

(1,b,R) 
 
 

(1,b,R) 
 
 
 

Universal Turing Machine 
 

The Turing machine that was discussed for the design till now is special-
purpose computers. Designing general purpose Turing machine is a more 
complex task. We must design a machine that can accept 2 inputs, (1) input data 
(2) description of computation (algorithm or program). This is precisely what a 
general-purpose computer does. It accepts data and program. 

A general purpose Turing machine is called „Universal Turing Machine 

(UTM)‟ when it is powerful enough to simulate the behavior of any computer 

including Turing machine itself. ie, a UTM can simulate the behavior of an 

arbitrary Turing machine over any . So a UTM is analogous to general-purpose 

computer which can execute any given program. 



 
 
 

  

  
  

 
 
 

 

Finite Control 
 
 
 
 
 
 
 
 
 
 
 
 
 

Description of M Internal state of M 
 
 
 
 

Input to M 
 
 
 
 

Modifications of basic model of TM 
 
 

The TM till now discussed are not the most efficient, but it is evident that 
even with very will-designed TMs, it will take a large number of states for 
simulating even a simple behavior. Thus we can modify our basic model by 

(a) increasing the number of R/W heads  
(b) making the tape 2D or 3D  
(c) adding special purpose memory (stack/special purpose registers)  

All these modifications will at most speed up the operation of the machine, 

but do not increase the computing power. 
 

Variants of Turing Machine 

 

1. Non-deterministic TM  
2. One-way infinite tape TM  
3. TM with „stay‟ option  
4. Multi tape TM  
5. Multidimensional TM  
6. Multi stack TM  

 
 
 
 
 
, 



  
 
 
 

1.  One-Way Infinite Tape TM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
 
 
 

2.  Turing Machine with ‘Stay’ Option 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.  Multi tape Turing Machine 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



  

  
  

 
 

 

4.  Non-Deterministic Turing Machine 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

5.  Multidimensional Turing Machine 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

  
  

 
 
 
 
 

6.  Multi stack Machines 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CONCEPTUAL TOOLS FOR CONSTRUCTION OF  
TURING MACHINES 

 
 
 
 
 
 

 

1.  Memory in Finite Control 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.  Multitrack Tape 
 
 
 
 
 
 
 
 

 

 



  

  
  

 
 
 
 
 
 
 
 
 
 
 

 

3.  Subroutines 
 
 
 
 
 
 
 
 
 

Halting Problem of Turing Machine  
According to Church's thesis, a TM can be treated as the most general 

computing system.  
Theorm:  

The Halting problem of TM over ={0,1} is unsolvable. ie, the problem of 

determining whether or not an arbitrary TM M over {0,1} halts for an arbitrary input x in 

* is unsolvable. 
Proof:  

Proof is by contradiction. Let M be an arbitrary TM. Let d(M) be the 
encoded binary string representing M. Then the machine string pair will have 
d(M)*x as its encoded description. According to our assumption HP is solvable. 
Hence there exists an algorithm P which decides HP. ie, 

= if M halts for input x, then P reaches an accept halt.  
= if M does not halt for input x, then P reaches a reject halt. 

Let us construct a new algorithm Q based on P as follows:  

= it takes d(M) as input and copies it to obtain d(M)*d(M) and then applies 
algorithm P to this input(ie, d(M)*d(M)),  

= Q loops for ever if P reaches an accept halt and Q halts if P reaches a reject halt. 

By Church‟s thesis, there exists a Turing machine say M‟, which can execute the   
algorithm Q. Since the algorithm P, as also Q, works for an arbitrary machine M, 

Q also works for M‟, so we take M=M‟. From (d) and (a) we can conclude that M‟ 

loops for ever if M‟ halts. From (d) and (b) we conclude that M‟ halts if M‟ loops 

for ever. Thus, we obtain the conclusion “ M‟ halts if and only if M‟ loops for ever”. 

This is a contradiction and HP is unsolvable. 
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