Introduction to Automata Theory

Automata theory is basically about the study of different mechanisms for generation and
recognition of languages. Automata theory is basically for the study of different types of
grammars and automata. A grammar is a mechanism for the generation of sentences in a
language. Automata is a mechanism for recognition of languages. Automata theory is mainly for
the study of different kinds of automata as language recognizers and their relationship with
grammars.

In theoretical computer science, automata theory is the studY of abstract machines and problems
they are able to solve. Automata theory is closely related to formal language theory as the automata are
often classified by the class of formal languages they are able to recognize.

An automaton is a mathematical model for a finite state machine (FSM). A FSM is a
machine that, given an input of symbols, "jumps” through a series of states according to a
transition function (which can be expressed as a table). In the common "Mealy" variety of FSMs,
this transition function tells the automaton which state to go to next given a current state and a
current symbol.

The input is read symbol by symbol, until it is consumed completely (think of it as a tape
with a word written on it, that is read by a reading head of the automaton; the head moves forward
over the tape, reading one symbol at a time). Once the input is depleted, the automaton is said to
have stopped.

Depending on the state in which the automaton stops, it's said that the automaton either accepts or
rejects the input. If it landed in an accept state, then the automaton accepts the word. If, on the other hand, it
lands on a reject state, the word is rejected. The set of all the words accepted by an automaton is called the
language accepted by the automaton.

Automata play a major role in compiler design and parsing.

Finite Automata is the simplest one of different classes of automata. Mainly there are 3 variants
of finite automata. They are:

Deterministic Finite Automata Non-
deterministic Finite Automata .
Non-deterministic Finite Automata with €-transition.

Here we define the acceptability of strings by finite automata.

Description of Automaton

An automaton can be defined in an abstract way by the following figure.

11 " , Ol
- Automaton %
12 > 02
ql,q2,.......... qn -
Ip > Og
Model of a discrete automaton
i) Input: - At each of the discrete instants of time t1,t2,.....input values I1,12......... each of

which can take a finite number of fixed values from the input alphabet Y, are applied to the input
side of the model.

ii) Output : - O1,02....are the outputs of the model, each of which can take finite numbers
of fixed values from an output O.

iii) States : - At any instant of time the automaton can be in one of the states q1,g2.....qn

iv) State relation : - The next state of an automaton at any instant of time is determined by
the present state and the present input. ie, by the transition function.

v) Output relation : - Output is related to either state only or both the input and the state. It should
be noted that at any instant of time the automaton is in some state. On 'reading' an input symbol, the
automaton moves to a next state which is given by the state relation.

An automaton in which the output depends only on the input is called an automaton without a
memory. An automaton in which the output depends on the states also is called automaton with a finite
memory. An automaton in which the output depends only on the states of the machine is called a
Moore Machine. An automaton in which the output depends on the state and the input at any instant of
time is called a Mealy machine.

Definition of a finite automaton

Basic model of finite automata consists of :

(i) An input tape divided into cells, each cell can hold a symbol
(if) A read head which can read one symbol at a time from a finite alphabet

(iii) A finite control which works within a finite set of states. At each step, it changes its state
depending on the current state and input read. Its change of state is specified by a transition
function. It accepts the input if it is in a set of accepting states.

l ‘ | | | | Input Tape
2 Read Head

Fintte
Control

a) Finite Automata — Formal Definition

. A finite automaton can be represented by a 5-tuple (Q,),,q0F) where Q —
finite set of internal states]
- finite set of symbols called input alphabet
— transition function _
IC__{oe Q — start state or initial state
€ Q — set of accepting states or final states
Transition function describes the change of states during the transition. This mapping is usually
represented by Transition diagram or Transition table.

Transition diagrams and Transition Systems

A transition graph or a transition system is a finite directed labeled graph in which each
vertex (node) represents a state and the directed edges indicate the transition of a state and the
edges are labelled with input. A transition graph contains:

(i) A finite set of states, one of which are designated as start state and some of which are
designated as final states.

Start state

(:) Final state

ii) An alphabet [of possible input letters from which input strings are formed.
ii1) A finite set of transitions that show, how to go from some states to some other states.
0 a transition system is a 5-tuple (Q,).,8,qoF)

If 8(qi,a)=q;, there is an edge labeled by 'a' from gi to g; . A transition system accepts a string
'W'in Y * if

1) there exists a path which originates from some initial state, goes along the arrows, and
terminates at some final state.

2) the path value obtained by concatenation of all edge-labels of the path is equal to 'w'".

Transition Table

The description of the automation can be given in the form of transition table also, in which we
tabulate the details of the transitions defined be the automaton from one state to another.

eg: Draw the transition diagram and transition table for accepting the language
L={all words ending in 'b' over (a,b)}

b
o () Transition Diagram
0
a a b
3/ a b Transition
10 90 a Table
> ql ql q0

b) Deterministic and Non deterministic Finite Automata

Deterministic fin ite automata (DFA)
Each state of an automaton of this kind has a transition for every symbol in the alphabet.

Deterministic Finite Automata can be defined as M=(Q,>,8,q0,F)
where Q is the set of states

> is the input symbols

d 1s the transition function Q)fQ’T‘B_‘

the start state

F is the final state

Nondeterministic finite automata (NFA)

States of an automaton of this kind may or may not have a transition for each symbol in the
alphabet, or can even have multiple transitions for a symbol. The automaton accepts a word if there
exists at least one path from qo to a state in F labeled with the input word. If a transition is
undefined, so that the automaton does not know how to keep on reading the input, the word is

ref':ect_ed. _
NFA is equivalent to the DFA.

Non-Deterministic Finite Automata also can be defined as M=(Q,>_,5,q0,F)
where Q is the set of states

] 1is the input symbols

0 is the transition function Q x m

the start state
F is the final state

Nondeterministic finite automata, with € transitions (FND-€ or e-NFA)

Besides of being able to jump to more (or none) states with any symbol, these can jump on no
symbol at all. That is, if a state has transitions labeled with &, then the NFA can be in any of the
states reached by the e-transitions, directly or through other states with e-transitions. The set of
states that can be reached by this method from a state q, is called the g-closure of g.

Moore machine

The FSM uses only entry actions, i.e. output depends only on the state. The advantage of the
Moore model is a simplification of the behaviour. The example in figure 1 shows a Moore FSM of
an elevator door. The state machine recognizes two commands: “command_open™ and
"command_close" which trigger state changes. The entry action (E:) in state "Opening" starts a
motor opening the door, the entry action in state "Closing™ starts a motor in the other direction
closing the door. States "Opened” and "Closed" don't perform any actions. They signal to the
outside world (e.g. to other state machines) the situation: "door is open” or "door is closed".

sensor_closed

sensor_opened

Transducer FSM: Mealy model example

Mealy machine

The FSM uses only input actions, i.e. output depends on input and state. The use of a Mealy FSM
leads often to a reduction of the number of states. The example in figure 4 shows a Mealy FSM
implementing the same behaviour as in the Moore example (the behaviour depends on the
implemented FSM execution model and will work e.g. for virtual FSM but not for event driven
FSM). There are two input actions (I:): "start motor to close the door if command_close arrives”
and "start motor in the other direction to open the door if command_open arrives".

In practice mixed models are often used.

Extended Transition function of DFA

The language of a DFA is the set of labels along the paths that lead from the start state to
any accepting state. Now we extended the transition function that describes what happens when we
start in any state and follow any sequence of inputs. If ¢ is our transition function, the extended
function constructed from 6 will be called 6.

The extended transition function is the function that takes a state 'q" and a string 'w' and returns a
state 'p', the state that automation reaches when starting in state 'q' and processing the sequence of inputs 'w'.
We define 6 by induction on the length of the input string as follows:

Basis : 6(q,€)=q. ie, if we are in state g and read no input, then we are still in the state g. Induction :
Suppose ‘W' is a string of the form xa, that is a is the last symbol of w and x is the substring of w,
consisting of all except the last symbol 'a'. For example,

w=1101 is broken into x=110 and a=1 then &(q,w) = 8(3(q,x),a)
ie, to compute 6(q,w), first compute d(q,x), the state that the automation is in after processing all
but the last symbol of w. Suppose this state is P, that is 6(q,x)=P. Then 6(q,w) is what we get by

making a transition from state P on input a, the last symbol of w.
5(q,w)=8(P,a)

Extended Transition function of NFA

As for DFA's, we need to extended the transition function 6 of an NFA to a function &' that takes a
state and string and return the set of states. . .
Basis : 0(q,€)={q}. That is without reading any input symbols, we are only in the same state.

Induction : Suppose w is of the form w=xa, where a is the last symbol and x is the substring
containing rest of w. Let us suppose that

o(q,x)={p1,p2.....pk}
Let U d(pi,a)={rl,r2.......... rm} then

6(q|,w)_={r1,r2 am}. Less formally, we compute 6(q,w) by first computing 8(q,x), and by then
following any transition from any of these states that is labeled a.

Language acceptability by Finite Automata

Suppose al,a2,a3............. an is a sequence of input symbols, q0,q1,92....... gn are set of states
\évh%re ?3) is ?tart state and gn is final state and transition function processed as
qV,al)=
) ql,a2)=c?2
)=q3

0(q2,a3)=q

S(qn-l,an)zqn
Input al,a2,a3........ an IS said to be 'accepted ' since gn is a member of the final state, and if
not then it is 'rejected'.

Language accepted by DFA 'M' written as
L(M)={w/ 5(qo,w)=qs for some qgs in F}

Examples of DFA

Example1: Q={0,1,2}, ¥={a}, A={1}, theinitial state is0and ¢ is as shown in the
following table.

| | :
State (q) lInput (a)l Next State (¢ (q, a))

0 a | 1
1 a | 2 J
2 | a | 2 |

A state transition diagram for this DFA is given below.

=

N2

If the alphabet 3 of the Example 1 is changed to { a, b } instead of { a }, then we need a DFA such as shown in
the following example to accept the same string a. It is a little more complex DFA.

Example2: Q={0,1,2}, ¥={a b}, A={1}, theinitial state is0and ¢ is as shown in
the following table.

’State (a) ilnput (a)i Next State (¢ (q,a))

|
0 a | 1 |
0 b | 2 |
L 1] a | 2 |
[1 b 2 |
L 2| a | 2 |
L 2] b | 2 |

Note that for each state there are two rows in the table for ¢ corresponding to the symbols a and b,
while in the Example 1 there is only one row for each state.

A state transition diagram for this DFA is given below.

State (q) || Input (a) || Next State (€, a)) |Examples of NFA
Lo | a | {1,2} |
¢ Example 1: Q={0,1,2}, ={a, b}, A={2}, the
0 b initial state is 0 and is as shown in the following table.
1 a ¢
L1 e {2} |
2 a ¢
¢
2 b

Note that for each state there are two rows in the table for ¢ corresponding to the symbols
a and b, while in the Example 1 there is only one row for each state.
A state transition diagram for this finite automaton is given below.

(i) Conversion of NFA to DFA

The conversion of a DFA equivalent to an NDFA involves three steps.

Step 1: Convert the given transition system into state transition table where each state corresponds
to a row and each input symbol corresponds to a column.

Step 2: Construct the successor table that lists subsets of states reachable from the set of initial

states.

Step 3: The transition graph given by the successor table is the required deterministic system. The
final states contain some final state of NDFA.

eg: Convert the following NFA to DFA

OO

0 1

a,b b

6(q0,2)={q0,q1}
6(q0,b)={q0}

3({q0,q1},a)= 6 (q0,a)Ud(q1,a)
~ ={q0,91}U{q2}

5({q0,q1 },b)= 5 (q0,b)Ud(ql,b)
= qO}U{}ql}
0,91

Similarly,
8({q0,q1,92},a)=6(q0,a) U 6(ql,a) U 8(q2,a))
= qu),ql,qiqS}

6({00,091,02},b)= {q0,91,03}
6({90,91,92,93},a)= {q0,91,92,93}
6({90,91,92,93}.b)= {q0,q1,93.92}
6({90,q1,93},2)= {q0,q1,92,3}
6({q0,q1,93},b)= {q0,q1,93.q2} old

Now we can draw the transition table for DFA.

new state
old state

old state

new state
new state
old state
old state
old state

state

o/

A | {q0}

{ 0,91}

{q0}

B {90,q1} {90,91,92 } {q0,91}

C {90.,91,92} {90.,91,92,93} {90.,91,93}

D *{q0,91,02,q3} {90.,91,92,93} {90,91,92,93}
E *{q0,91,g3} {90.,91,92,93} {90,91,92,93}

Now let us draw the transition diagram

-0

b b

a > b
{)—@
a,b

D a,b

c) Finite Automaton with €-transition

Besides of being able to jump to more (or none) states with any symbol, these can jump on
no symbol at all. That is, if a state has transitions labeled with &, then the NFA can be in any of the
states reached by the e-transitions, directly or through other states with e-transitions. The set of
states that can be reached by this method from a state q, is called the g-closure of q.

An NFA can be modified to permit transition without input symbols, along with one or
more transition on input symbols; we get a "NFA with € transition". Since the transition is made
without symbols the transition is called as "€-transition”. These transitions can occur when no
input is applied. But it is possible to convert a transition system with €-transition into an
equivalent transition system without €-moves.

) It is to be noted that € is not a symbol to aﬁpear on the tape. ie, €-transition means a transition
without scanning the symbol. ie, not moving the read head.

eg: 0(q, €)=p means that from the state 'q', it can jump to 'p' without moving the read head. ie, it
can be in 'p' or 'q. Thus it introduces a hidden non-determinism. €-transitions are useful in
specifying optional items in a string.

eg: Inatypical programming language, while specifying a numeric constant, the sign is optional.

+,-, € 0-9

4’@ >@ @ Transition Diagram

0 1

0-9

Formal Definition of €-NFA

€-NFA is defined as M=(Q,] ,8,q0,F) where Q,1,q0 and F are same as in NFA but & includes €

moves and is defined as 6: Qx[J |U{ (o a2
To define the behavior of €-NFA on strings, we require a function called €-closure, which is
defined as €-closure(q) is the set of all states reachable from q using €-transitions.

eg:

€-closure (q0)={q0,91,92}
€-closure (ql)={ql,q2} €-
closure (g2)={q2}

(ii)Conversion of NFA with €-transition to NFA with out €-transition
(Eliminating €- transition)

Let M=(Q,[7,5,q0,F) be an ENFA. There are some steps for the conversion of NFA with €-
transition to NFA with out €-transition.

Step 1: Find the states of NFA without €-transition including initial states and final states.
Step 2: There will be same number of states. The initial state of NFA without €-transition will be €-
closure of initial state of €- NFA.

ie, €-closure (q0)={q0,q1,q2} initial state for NFA without €-transition, rest of the states
are
€-closure(ql)={q1,92
€-closure§323 igz}q }
Step 3: The final states of NFA without €-transitions are all those new states which contains final
state of €-NFA as member.

Step 4: Now find out &' to find out the transitions for NFA without €-transition. Ignore @ entries
and €-transitions column.

eg: Convert the following NFA with €-transition to NFA without €-transition

From the above transition diagram,

o/ a b c c

90 [{q0} [{®} |{®} |{al}

ql | {®} | {ql} (o} [{92}

Q2 {D} (o} {92} (D}

€-closure (q0)={q0,91,92}=qa new initial state for NFA without € transition, rest of the states are
€-closure(ql)={ql,q2}=qb new state
€-closure(q2)={g2}=qc new state

6'({90,q91,92},a)= 8'(qa,a)=€-closure (5(q0,q1,92),a)
= €-closure (6(%0,3) U d(ql,a) U d(q2,a))
= €-closure(q0 U @ U @)
= €-closure(q0)
={q0,a1,92}

6'({90,q1,92},b)= 8'(qa,b)=€-closure (5(q0,q1,92).b)
= €-closure (6(q0,b) U 8(ql,b) U 6(q2,b))
= €-closure(® U {ql
= €-closure(gl)
={q1,92}

6'({90,91,92},¢)= 8'(qa,c)=€-closure (3(q0,q1,92),c)
= €-closure (6(80’(:) U d(ql,c) U d(q2,¢))
= €-closure(® U @ U q2)
= €-closure(g2)
={q2}

LU O

0'(1q1,92},a)= 8'(gb,a)=€-closure (5(ql,q2).a)

= €-closure (6(ql,a) U 6(g2,a
—closure(&) (131 CD)) (a22)
-closure(®d)

nn i
Slple!

6'({q1,q2},b)= 8'(gb,b)=€-closure (3(q1,q2),b)
-closure (6(%1 ,b) U 6(q2,b))
-closure(ql U @)
-closure(ql)

{9192}

8'({q1,q2},0)= 5'(qb,0)=€-cllosure (g(ql,q2),%)
= €-closure 1,c) U d(q2,c
= €—c1031111re(&) (131 q2)) (a2.)
= €-closure(g2)
={02}

MMM M

0'({q2},a)= d8'(qc,a)=€-closure (5(q2),a)

0'({g2},b)=0'(qc,b)=€-closure (5(q2),b)
=0

0'({q2},¢)= d'(qc,c)=€-closure (6(q2),c)
= €—<2:Iosure(q2

=19 ..
Now we can draw the transition table for NFA without €-transition.

S/ a b c
A |{q0,q1,92} {q0,91,92} {al,02} {92}
B *{q1,g2} {D} {91,g2} {92}
c * {92} {D} 1@} {92}

Regular operations, Regular expressions and
Regular languages

a) Regudar expressions

Regvdar expressions are precisely deﬁned by a set of rules. For each rule, we describe the
cowespond'mg [anguage. The [anguages accepted by ﬁnite automata are easi[y described by simp[e expressions
called Vegular expressions. Every Vegu[ar expression speciﬁes a [anguage. Regu[av expression is a declarative

way to express the strings, we want to accept.
Definition of Regular expression

The set of Vegular expression is deﬁned on the fo“owing rules:

1) Every letter of 2 can be made into a Vegu[av expression, null string, € itse[f isa Veguiav expression.

2) 1f 1 and r2 are regular expression, then
D) (n) i) rir2 iii) r1+r2) r* V) i+

are a[so re [ar expression.
guiar exp

b) Regudar [anguages

Regular languages are those that can be generated by applying certain standard
operations like union, concatenation and closure, a finite number of times. They can be
recognized by finite automata.

Let = be an alphabet. The regular expressions over ¥ and the sets that they denote
are defined recursively as follows.

1) @ is a regular expression and denotes the empty set.

2) ¢ is a regular expression and denotes the set {¢}.

3) For each 'a'in X, a is a regular expression and denotes the set {a}.

These are known as simple regular languages. Regular language over an alphabet X
is one that can be obtained from these basic (simple) languages using the operations of
union, concatenation and closure, a finite number of times.

C) Reqular operations
Mainly there are 3 operations on regular expressions. They are union,
concatenation, and kleene closure operation.
If L1 and L2 are any elements of set R of regular languages over > and r1
and r2 are the corresponding regular expressions,
i) Union — (L1 U L2) corresponding regular expression is (r1+r2)
i) Concatenation — (L1.L2) corresponding regular expression is (rl. r2)
iii) Kleene closure — (L1*) corresponding regular expression is (r1)*

Algebra of Regular Expression

Regular expressions satisfy the following algebraic identities. These identities help
us in simplifying regular expressions.
(1) Identity Law
e.R=R.e=R
O+R=R+®=R
(2) Idempotent
Law R+R=R
(R)=R*
(3) Distributive Law
A.(B+C)=A.B+A.C
(4) Associative Law
A.(B.C)=(A.B).C
A+(B+C)=(A+B)+C
(5) Annihilation
O.R=R.O=D

Example 1: It is easy to see that the RE (0+1)*(0+11) represents the language of all
strings over {0,1} which are either ended with O or 11.

Example 2: Consider the language of strings over {0,1} containing two or more 1's.

Solution : There must be at least two 1's in the RE somewhere and what comes before,
between, and after is completely arbitrary. Hence we can write the RE as
(0+1)*1(0+1)*1(0+1)*. But following two REs also represent the same language, each
ensuring presence of least two 1's somewhere in the string

i) 0¥10*1(0+1)*
i) (0+1)*10*10*
Iii) Regular Expression to Finite state Automata :

Lemma : If L(r) is a language described by the RE r, then it is regular i.e. there is a FA
such that L(M) = L(r).

Proof : To prove the lemma, we apply structured index on the expression r. First, we show how to

construct FA for the basis elements: ¢ , €and for any 2€2 Then we show how to combine
these Finite Automata into Complex Automata that accept the Union, Concatenation, Kleen
Closure of the languages accepted by the original smaller automata.

Use of NFAs is helpful in the case i.e. we construct NFAs for every REs which are
represented by transition diagram only.

Basis :

e Case (i): r=g . Then L(r) =¢ . Then L(r) =¢ and the following NFA N recognizes L(r).

Formally V=(Q 4.2 5.4.F ¢ where Q = {q}and 9@-@) =@V aES, F=¢

O © O

N

« Case (i): r=€. L(r)={} and the following NFA N accepts L(r).

N=({g}. % 4.4 {g}) dg.a)=¢ VaeZ

Formally where

00 @

Since the start state is also the accept step, and there is no any transition defined, it will
accept the only string € and nothing else.

e Case (iii) : r = a for some @€ Then L(r) = {a}, and the following NFA N accepts

L(r).

Formally, V=({r.q). 2. 8.2.{9}) ypere 9(7a)={a). 86 B =B (5 5% o bea

Induction :

Assume that the start of the theorem is true for REs " land "? . Hence we can assume that we

have automata My and ¥, that accepts languages denoted by REs "land " | respectively i.e.

L(M)=L(5) L{My)=L(n,

and . The FAs are represented schematically as shown below.

Each has an initial state and a final state. There are four cases to consider.

r,o=n t L(n) v L(r) We

o« Case (i) : Consider the RE 2 denoting the language

M. M.

construct FA 3 from land M,

? to accept the language denoted by RE "z as follows

Create a new (initial) start state ¢ and give € - transition to the initial state of My and ¥

.This is the initial state of M3.

o Create a final state 7 and give € -transition from the two final state of M, and ¥, :
7 is the only final state of M, and final state of M, and M, will be ordinary states in
M3

. Allthe state of *1and ¥ are also state of .

e All the moves of M, and ¥, are also moves of M3. [Formal Construction]

Itis easy to prove thatt#3) = £(%)

L{M;) = L(n)

Proof: To show that we must show that

= L{n) v L(n)

L(My) = L(M,, by following transition of 2.

M

Starts at initial state ¢ and enters the start state of either ““lor g following the transition i.e.

without consuming any input. WLOG, assume that, it enters the start state of Ml. From this point

onward it has to follow only the transition of My to enter the final state of Ml, because this is the
only way to enter the final state of M by following the e-transition.(Which is the last transition & no
input is taken at hte transition). Hence the whole input w is considered while traversing from the

M, M, M,

start state of to the final state of . Therefore must accept ™ .

Say, w eL(Ml)Or w e L(M,) -

WLOG, say"” €L(3)

My process the string w , it starts at the initial state and enters the final state

M also accepts w, by starting at

Therefore when
when w consumed totally, by following its transition. Then
state ¢ and taking € -transition enters the start state of My -follows the moves of My to enter

the final state of M, consuming input w thus takes € -transition to /" Hence proved.

L(n) Lin

« Case(ii) : Consider the RE "#~ 12 denoting the language) . We construct

M, M, M

FA from “1& ™ to accept L) as follows :

Create a new start state g and a new final state

1. Add € - transition from

o ¢ tothe start state of 1
o Y10/
o final state of Mlto the start state of ¥
2. All the states of My are also the states of M3. My has 2 more states than that of
Mlnamely ¢ and /|
3. All the moves of Mlare also included in My
By the transition of type (b), M, can accept €

By the transition of type (a)‘,w3 can enters the initial state ofv W/o any input and then follow all

kinds moves of M, to enter the final state of M, and then following € -transition can enter J . Hence

M.

if any WEZ g accepted by M, then w is also accepted by ““3. By the transition of type (b), strings

accepted by M, can be repeated by any no of times & thus accepted by M3. Hence M accepts €

and any string accepted by M, repeated (i.e. concatenated) any no of times. Hence
L) =(L(My)) =(L(r),) =7

e Case(iv) : Let "Z=(). Then the FA Miis also the FA for (1), since the use of

parentheses does not change the language denoted by the expression.

Iv) Conversion of Finite Automata to Regular Expression by Elimination

of States
In this method, all intermediate states are eliminated in a systematic order. The
principle is explained below. Consider a state ‘s’ to be eliminated. Let ‘p’ be its successor
and ‘q’ be its predecessor as shown:

a b

c

It can be observed that all strings of the form ac*b take the automata from g to p and pass through

S. now, s can be removed and we can attach an edge labeled ac*b from q to p directly.

ac*b

OO

During this process, we obtain transitions labeled by regular expressions. Such diagrams
are called ‘Generalized transition diagrams’. The general rule can be described as below.
If a state ‘s’ is to be eliminated, we have to consider each pair of a predecessor and a
successor (g,p). consider the general situation as given below.

R T

~(—0—0

P

After elimination of ‘s’, we attach a direct edge labeled by R1+RS*T as shown below.

~O-0)

By this process, we eliminate all intermediate states leaving the start state and a final
state. Configuration at the end is one of the following patterns.

R1
——»
4—

s
R2 S

Regular expression in this case is (R+R*R1S*R2)* R1S* or (R*R1S*(R2R*R1S*)*

©,

In this case, the regular expression is R*.

R

Limitations of Finite Automata and Non regular Languages :

The class of languages recognized by FA s is strictly the regular set. There are certain
languages which are non regular i.e. cannot be recognized by any FA

= MM >
Consider the language £ {a 2 |n‘0}

In order to accept is language, we find that, an automaton seems to need to remember when passing
the center point between a's and b's how many a's it has seen so far. Because it should have to

compare that with the number of b's to either accept (when the two numbers are same) or
reject (when they are not same) the input string.

But the number of a's is not limited and may be much larger than the number of states
since the string may be arbitrarily long. So, the amount of information the automaton need
to remember is unbounded.

A finite automaton cannot remember this with only finite memory (i.e. finite number of states). The
fact that FA s have finite memory imposes some limitations on the structure of the languages

recognized. Inductively, we can say that a language is regular only if in processing any string in
this language, the information that has to be remembered at any point is strictly limited. The

. nmn . . .
argument given above to show that ¢%" is non regular is informal. We now present a

formal method for showing that certain languages such as @' are non regular.

Pumping Lemma for regular languages

In the theory of formal languages, a pumping lemma states that any language of a
given class can be "pumped" and still belong to that class. A language can be pumped if any
sufficiently long string in the language can be broken into pieces that can be repeated to
produce an even longer string in the language. Thus, if there is a pumping lemma for a given
language class, any language in the class will contain an infinite set of finite strings all
produced by a simple rule given by the lemma. The two most important examples are the
pumping lemma for regular languages and the pumping lemma for context-free languages.
Unlike theorems, lemmas are specifically intended to facilitate streamlined proofs. These two
lemmas are used to determine if a particular language is not in a given language class.
However, they cannot be used to determine if a language is in a given class, since satisfying
the pumping lemma is a necessary, but not sufficient, condition for class membership.

Pumping Lemma :
Let L be a regular language. Then the following property olds for L.

There exists a number %20 (called, the pumping length), where, if W is any string in L of length at

|w|Z}c

least K i.e. , then w may be divided into three sub strings W = XYz, satisfying the

following conditions:

1. yeeie MPPO

2 |xy|$»’c
3 Vi20 n'zel

Proof : Since L is regular, there exists a DFA M=(Q.%.0.9,. F) that recognizes it, i.e.
L = L(M) . Let the number of states in M is n.

Say' Q = {QO’QI’QQ’I“’QH}

>
Consider a string W € L such that |w|" 4 (we consider the language L to be infinite and hence such

a string can always be found). If no string of such length is found to be in L , then the
lemma becomes vacuously true.

Since V< Lo(qw)eF . Say (4. W) = while processing the string w , the DFA M
goes through a sequence of states of states. Assume the sequence to be

90.93.92.90:" G0 G
2 »
start state final start

. 2 .
Since |W| 4 , the number of states in the above sequence must be greater than n + 1. But number of

states in M is only N. hence, by pigeonhole principle at least one state must be repeated.

Let i and Qi be the Qi same state and is the first state to repeat in the sequence (there
may be some more, that come later in the sequence). The sequence, now, looks like

QUFQ3>QQ,Q4,' ",qi,"'q:,--.,q”

which indicates that there must be sub strings X, Y, Z of W such that

This situation is depicted in the figure

xy|$n

Since % (= qi) is the first repeated state, we have, | and at the same time Y cannot be empty

S(qo,zz)= xz=xz€eL .

i.e pl>0 . From the above, it immediately follows that % Hence

Similarly,

A 2 _
5(%’ W z) ~n implying p'zel

a 3 -
5(%’}0' z) ~ %% implying vz€ L
and so on.

That is, starting at the loop on state can be omitted, taken once, twice, or many more
times, (by the DFA M) eventually arriving at the final state

Thus, accepting the string Xz, Xyz, Xy°z,... i.e. Xy'z for
all i20 Hence 120zl

We can use the pumping lemma to show that some languages are non regular.

Pumping Lemma

In this section we give a necessary condition for an input string to belong to
a regular set. The result is called pumping lemma as it gives a method of
pumping (generating) many input strings from a given string. As pumping
lemma gives a necessary condition, it can be used to show that certain sets are
not regular.

Theorem 5.5 (Pumping Lemma) Let M = (Q, X, &, g, F) be a finite
automaton with n states. Let L be the regular set accepted by M. Let w € L
and | w| 2 m. If m 2 n, then there exists x, y, z such that w = xyz, y # A and
xy'z € L for each i = 0.

Proof Let

~

W =aa ... Qay, mz2n
&gy ayar ... a)=¢q; fori=1 2,m O =190 g1 - - G}

That is, Q, is the sequence of states in the path with path value w = qa- . . . a,,
As there are only n distinct states, at least two states in Q; must coincide.
Among the various pairs of repeated states, we take the first pair. Let us take
them as g; and ¢,(q; = qi). Then j and k satisfy the condition 0 < j < k < n,

The string w can be decomposed into three substrings a,a; . . . a; aj - ..
a, and ap, ... a, Let x, y, z denote these strings aya; ... a;, G, ... a
Q) - - - @, respectively. As k < n, |xy| € n.and w = xyz. The path with the
path value w in the transition diagram of M is shown in Fig. 5.27.

The automaton M starts from the initial state g,. On applying the string
x, it reaches g;(=q;). On applying the string y, it comes back to g,(= g;). So
after application of y* for each i 2 0, the automaton is in the same state g;.
On applying z, it reaches ¢,,, a final state. Hence, xy'z € L. As every state in
Q, is obtained by applying an input symbol, y # A. |

Application of Pumping Lemma

This theorem can be used to prove that certain sets are not regular. We now
give the steps needed for proving that a given set is not regular.

Step 1 Assume that L is regular. Let n be the number of states in the
corresponding finite automaton.

Step 2 Choose a string w such that | w | 2 n. Use pumping lemma to write
w = xyz, with |[xy| < nand |y| > 0.

Step 3 Find a suitable integer i such that xy’z € L. This contradicts our
assumption. Hence L is not regular.

Note: The crucial part of the procedure is to find i such that xy’z ¢ L. In

some cases we prove xy'z € L by considering | xy'z |. In some cases we may
have to use the ‘structure’ of strings in L.

Example 1:

Show that the set L = {a” | i> 1} is not regular.

Solution

Step 1 Suppose L is regular. Let n be the number of states in the finite
automaton ‘accepting L.

Step 2 Let w = &". Then |w| = n* > n. By pumping lemma, we can write
w = xyz with |xy| < n and |y| > 0.

Step 3 Consider xy’z. |xy*z| = |x| + 2|y| + |z| > |x
|y| > 0. This means n*> = |xyz| = |x| + |y| + |z] < | oz
we have |y| < n. Therefore,

+ |y| + |z| as
. As |xy| £ n,

0% = |x] + 2y| + |z < n* 4+ n

5 9 o))
nm<|xyz|Sn+n<n+n+n+1

Hence, | xy°z | strictly lies between n” and (n + 1)? but is not equal to any
one of them. Thus | xy’z| is not a perfect square and so xy°z ¢ L. But by
pumping lemma, xy°z € L. This is a contradiction.

Example 2:

Show that L = {&”|p is a prime} is not regular.

Solution

Step 1 We suppose L is regular. Let n be the number of states in the finite
automaton accepting L.

Step 2 Let p be a prime number greater than n. Let w = &”. By pumping
lemma, w can be written as w = xyz, with |xy| < nand |y| > 0. x, y, z are
simply strings of a’s. So, y = a" for some m 2 1 (and < n).

Step 3 Leti=p + 1. Then | o'z| = | xyz | + Vl=p+G-1m=p+
pm. By pumping lemma, xy'z € L. But | xy'z| = p + pm = p(1 + m), and p(1
+ m) is not a prime. So xy'z € L. This is a contradiction. Thus L is not regular.

Example 3:

Show that L = {0'1'|i > 1} is not regular.

Solution

Step 1 Suppose L is regular. Let n be the number of states in the finite
automaton accepting L.

Step 2 Let w = 0"1". Then |w| = 2n > n. By pumping lemma, we write
w = xyz with |xy| < n and |y| # 0.

Step 3 We want to find i so that xy'z € L for getting a contradiction. The
string y can be in any of the following forms:

Case 1 y has 0’s, i.e. y = 0" for some k > 1.

Case 2 y has only 1’s, i.e. y = 1/ for some I > 1.

Case 3 y has both 0's and 1’s, i.e. y = 0°V for some &, j > 1.

In Case 1, we can take i = 0. As xyz = 0"1", xz = 0"*1". As k> 1,n -
k #n So, xz ¢ L

In Case 2, take i = 0. As before, xz is 0"1" and n # n — L. So, xz & L.

In Case 3, take i = 2. As xyz = 0"*0%V1"7, xy’z = 0" % OFVOF V1", As xy’z
is not of the form 0’1, xy’z ¢ L.

Thus in all the cases we get a contradiction. Therefore, L is not regular.

Example 4:

Show that L = {ww |w € {a, b}*} is not regular.

Solution

Step 1 Suppose L is regular. Let n be the number of states in the automaton
M accepting L.

Step 2 Let us consider ww = a@"ba"b in L. |ww| = 2(n + 1) > n. We can
apply pumping lemma to write ww = xyz with [y | # 0, |xy| £ n.

Step 3 We want to find 7 so that xy'z ¢ L for getting a contradiction. The
string y can be in only one of the following forms:

Case 1 vy has no b’s, 1.e. y = d" for some k > 1.
Case 2 y has only one b.

We may note that y cannot have two b’s. If so, |y| 2 n + 2. But |y| <
|xy| € n. In Case 1, we can take i = 0. Then xy°z = xz is of the form a"ba"b,
where m = n — k < n (or a'ba”™b). We cannot write xz in the form wu with
u e {a, b}*, and so xz ¢ L. In Case 2 too, we can take i = 0. Then .\'y(); =IXT
has only one b (as one b is removed from xyz, b being in y). So xz € L as
any element in L should have an even number of a’s and an even number of
b's.

Thus in both the cases we get a contradiction. Therefore, L is not regular.
Note: If a set L of strings over X is given and if we have to test whether
L is regular or not, we try to write a regular expression representing L using
the definition of L. If this is not possible, we use pumping lemma to prove
that L is not regular.

Example 5:

Is L = {a|n 1} regular?

Solution

We can write a™ as a(a”)'a, where i 2 0. Now {(a”)" | i =2 0} is simply {
So L is represented by the regular expression a(P)*a, where P represents {
['he corresponding finite automaton (using the construction given in Sectic

5.2.5) 1s shown in Fig. 5.28

Applications of Finite state automata

1) Lexical Analyzers

In computer science, lexical analysis is the process of converting a sequence of
characters into a sequence of tokens. Programs performing lexical analysis are called
lexical analyzers or lexers. A lexer is often organized as separate scanner and
tokenizer functions, though the boundaries may not be clearly defined.

Lexical grammar

The specification of a programming language will include a set of rules, often expressed
syntactically, specifying the set of possible character sequences that can form a token or
lexeme. The whitespace characters are often ignored during lexical analysis.

Token

A token is a categorized block of text. The block of text corresponding to the token is
known as a lexeme. A lexical analyzer processes lexemes to categorize them according
to function, giving them meaning. This assignment of meaning is known as tokenization.
A token can look like anything: English, gibberish symbols, anything; it just needs to be a
useful part of the structured text.

Tokenizer

Tokenization is the process of demarcating and possibly classifying sections of a string of input characters. The resulting

tokens are then passed on to some other form of processing. The process can be considered a sub-task of parsing input.

Lexical analyzer generators

o Flex - Alternative variant of the classic 'lex' (C/C++).

o JLex- A Lexical Analyzer Generator for Java.

e Quex - (or 'Quey’) A Mode Oriented Lexical Analyzer Generator for C++.
e OOLEX-An Obj ect Oriented Lexical Ana[yzer Generator.

e e

e PLY-An imp lementation of lex and yacc parsing tools for Python.

i) Text Search

String searching algorithm (text searching)

String searching algorithms, sometimes called String matching algorithms, are an important class of

string a[govitffmas that try to ﬁnd a p[ace where one or several strings (also called pa’ctems) are found within a [arger string or text.

Let = be an alphabet (finite set). Formally, both the pattern and searched text are concatenations of elements of . The £ may be a
usual human alphabet (for example, the letters A through Z in English). Other applications may use binary alphabet (z -
{o1}) or DNA alphabet (Z={A,C,G,T}) in bioinformatics.

In practice how the string is encoded can aﬂ‘ect the feasib[e string search a[gorithms. In parﬁculav gf a variable width encoding is

in use then it is slow (time pvoporﬁonal to N) to ﬁnd the Nth character. This will S'Lgn'g[icantly slow down many of the more
advanced search a[gorithms. A possible solution is to search fov the sequence of code units instead, but do'mg so may produce fa[se

matches unless the encod'mg is specﬁca“y designed to avoid it.

The concept of finite automata has several applications in many areas like compiler design,
special purpose hardware design, protocol specification etc. Some of the applications are
described below.

(a) Compiler Design: Lexical analysis is an important phase in compiler. In lexical
analysis, transition diagram (FA) is used in recognition of tokens.
Example: Transition diagrams to recognize the tokens ‘begin’ and identifier are
shown below.

= . . . - . : ° : a ; @
_>
letter/digit

start o letter @

Relation between FA and regular expressions (described later) has made many
UNIX packages like LEX, text formatting tools possible. Many UNIX tools
extensively use regular expressions to specify user inputs. Implementation is
essentially, a program to simulate the equivalent DFA.

(b) Hardware design: In the design of computers, FA is used to design control unit of
a computer. A typical sequence of operations in a computer consists of a repetition
of instructions and each instruction involves the actions fetch, decode, fetch the
operand, and execute. Each state of a FA represents a specific stage of instruction
cycle.

(c) Protocol specification: Any system consists of an interconnected set of subsystems.
A protocol is a set of rules for proper coordination of activities of a system. Such a
protocol can be described by transition diagrams. An example of a Bank is shown in

State a represents the entry of a customer. After he wishes to credit some cash to his
a/c no, system is in state b. Then, the cashier receives cash (state ¢) and updates the
a/c to reach the final state of this transaction. If the customer wants to withdraw cash,
he submits the withdrawal slip (or Cheque). Then, system is in state e. In state e, his
Cheque/slip is verified to confirm that there is sufficient balance. After verification,
system is in state f. Then the customer is paid cash and system reaches state g. Then,
customer’s a/c is updated and the system reaches the final state d of the transaction.

Introduction Push Down Automaton

In the case of finite automata, several languages cannot be recognized by them.
Some important programming constructs involving nested structures are beyond the
capacity of finite automata. Normally regular languages are accepted by finite automata
and Pushdown Automata are used to recognize Context Free Language.

It is observed that FA has limited capability. (in the sense that the class of languages
accepted or characterized by them is small). This is due to the "finite memory" (number of states)
and "no external memory" involved with them. A PDA is simply an NFA augmented with an "external
stack memory". The addition of a stack provides the PDA with a last-in, first-out memory
management capability. This "Stack” or "pushdown store" can be used to record potentially
unbounded information. It is due to this memory management capability with the help of the stack
that a PDA can overcome the memory limitations that prevents a FA to accept many

interesting languages Iike[“”bkl’gm] . Although, a PDA can store an unbounded amount

of information on the stack, its access to the information on the stack is limited. It can
push an element onto the top of the stack and pop off an element from the top of the
stack. To read down into the stack the top elements must be popped off and are lost.
Due to this limited access to the information on the stack, a PDA still has some
limitations and cannot accept some other interesting languages.

Consider the problem of recognition of the context-free language L={a"b"/n>=0}. The a’s
in the given string are added to the stack. When a symbol ‘b’ is encountered in the input string,
an ‘a’ is removed from the stack. Thus the matching of number of ‘a’s and ‘b’s is accomplished.
This type of arrangement where a finite automaton has a stack leads to the generation of a
“Pushdown Automaton” (PDA). Pushdown automation is an extension of the NFA.

input tape

al a> AL | sesccscerssssccensssssaanssensnen an

finite
control

Q

push/pop

As shown in figure, a PDA has three components: an input tape with read only head, a
finite control and a pushdown store.

The input head is read-only and may only move from left to right, one symbol (or cell) at
a time. In each step, the PDA pops the top symbol off the stack; based on this symbol,
the input symbol it is currently reading, and its present state, it can push a sequence of
symbols onto the stack, move its read-only head one cell (or symbol) to the right, and
enter a new state, as defined by the transition rules of the PDA.

PDA are nondeterministic, by default. That is, € - transitions are also allowed in which the
PDA can pop and push, and change state without reading the next input symbol or moving
its read-only head. Besides this, there may be multiple options for possible next moves.

Pushdown Automata

Basic model of PDA consists of 3 components:
vi) an infinite tape
vii) a finite control
viii) a stack
Now let us consider the ‘concept of PDA’ and the way it ‘operates’.

I | Input Tape

A

Read-write Head

Finite
Control

Stack

Each move of a PDA depends on the current state, input symbol and top of stack symbol.
The finite control reads the input from the input tape, and same time it reads the symbol from stack
top. It depends on finite control. The stack is also called ‘Pushdown Store’. It is a read-

In this representation, there is a node for each state. A transition S(qi,a,A)z(qj,OL) is Vepresented on an edge ﬁ'om
qitogj and labeled by a,A/ o

EQ: Construct a PDA to recognize the language L={anbn [n>=1} Solution: PDA can be defined
as M=(QZ,T,0,q0,20,F). For this PDA,

%{qo,q1,q2} 2={a,b} T={Zo,A} O can be defined as follows:
8(00,a,Zo)=(q0,AZ0)

= 0(qo,aA)=(q0,AA)

= 0(qo.bA)=(q¢)

5(
o

= Bd(qrbA)=(qre)
8(q1 €,20)=(2,

Now M can be deﬁned as M:({qo,q1,q2},{a,b},{Zo,A},6,q0,ZO,q2). The descr'qoﬂon of PDA on using Transition table and

Transition diagram isas fo“ows:

By using transition table:
State TOS symbol a b c
Zo (q0,AZo) - -
qo
A (q0,AA) (q,€) —
A - (q.€) -
qQ
Zo — - (g2, €)
a,Zo/AZo
»

bhA/e /‘\ €,70/ €

a,AlAA

Example 2 : wWe give an example of a PDA M that accepts the set of balanced
strings of parentheses [] by empty stack. The PDA M is given below.

M=({a}{LYA20.6.9.2.8) \nere € is defined as

Informally, whenever it sees a [, it will push the] onto the stack. (first two transitions), and whenever
it sees a] and the top of the stack symbol is [, it will pop the symbol [off the stack. (The third
transition). The fourth transition is used when the input is exhausted in order to pop z off the stack (
to empty the stack) and accept. Note that there is only one state and no final state.

The following is a sequence of configurations leading to the acceptance of the string [[1[1]11]

(o.[010010)2) (LI Liz) (g 20000 L002) (g [10 L[2z) —(g. 100 LI[2)

(. 110 L0[2) —(2. 100l 2) —(a.[]z) —(2.][2) —(9.€2) —(g.5.€)

Deterministic and nondeterministic PDA

A PDA is deterministic if there is never a choice of move in any situation. If 8(q,a,A)
contains more than one pair, then surely the PDA is non deterministic because we can choose
among these pairs when deciding on the next move. However even if §(q,a,A) is always a
singleton, we could still have a choice between using a real input symbol or making a move on
e. Thus we define a PDA as

P=(Q,Z,1,8,090,Z0,F) to be deterministic if and only if the following conditions are met:
1.5(g,a,A) has at most one member forany qin Q,ainXora=eand AinT.

2. 8(g,a,A) is nonempty, for some g in Q, a in X then 8(q,e,A) must be empty.

Unlike finite automaton DPDA allows e-transition. But if for any combination (q,A), e-
transition is present, transition on any other symbol is not allowed.

3 can be defined as:

0:Qx(ZUe) xT QxT*

eg:- for DPDA {wew"/we{0,1}}

for NPDA {ww"/we{0,1}*}

In the first one we cannot determine when to switch over from ‘pushing state’
to ‘matching state’. In the second one PDA cannot determine whether to push A or
pop A while scanning 0’s. Hence a choice is necessary.

Here

d is be defined as:

§:Qx(ZUe) xT 2Qx™M

"B |n 2 0]
Example 1: Construct a PDA that accepts the Ianguage{a %:29) .

M=(0.Z2.T.8q,2.F)

1.6(gy,a,2) ={(g;.,a2)}
2. 5(Q'2 ,asa:l = {(Q2’aa)}
3. 8(gy.5,4) ={(¢2,)}

4. 8(g5.b,a) ={(g.€))
5. 8(¢3,€,2) ={ (¢4, 2))

The PDA can also be described by the adjacent transition diagram.

a, a/aa b, ale

Informally, whenever the PDA M sees an input a in the start state 91with the start symbol z
on the top of the stack it pushes a onto the stack and changes state to (i (to remember that it has
seen the first 'a"). On state % if it sees anymore a, it simply pushes it onto the stack.

Note that when M is on state | the symbol on the top of the stack can only be a. On state % if it
sees the first b with a on the top of the stack, then it needs to start comparison of numbers of a's
and b's, since all the a's at the beginning of the input have already been pushed onto the stack.
It start this process by popping off the a from the top of the stack and enters in state g3 (to

remember that the comparison process has begun). On state % it expects only b's in the input (if it
sees any more a in the input thus the input will not be in the proper form of a"b"). Hence there

is no more on input a when it is in state % . Onstate % it pops off an a from the top of the stack
for every b in the input. When it sees the last b on state g3 (i.e. when the input is exhausted),
then the last a from the stack will be popped off and the start symbol z is exposed. This is the

only possible case when the input (i.e. on € -input) the PDA M will move to state %
which is an accept state.

We can show the computation of the PDA on a given input using the IDs and next move
relations. For example, following are the computation on two input strings.

Let the input be aabb. we start with the start configuration and proceed to the
subsequent IDs using the transition function defined

(g.aabbz) | (g,.abb,az) (using transition 1)

- (43,b,aaz) (using transition 2)

- (@.8.0z) (using transition 3)
—(#.6.2) (using transition 4)
— (4.6.2) (using transition 5)

% is final state. Hence ,accept. So the string aabb is rightly accepted by M.

we can show the computation of the PDA on a given input using the IDs and next move
relations. For example, following are the computation on two input strings.

i) Let the input be aabab.

[ql,aabab,z) ,__[gg,abab,azj

i [gg ,bab,aaz)

- (¢.ab,0z)

No further move is defined at this point.

Hence the PDA gets stuck and the string aabab is not accepted.

i ={wcw“fwe (0+l)°]

Example 2: The language is a DCFL . The following DPDA accepts L

€z, 1z
i (o) —2p(4,)
£,010

241

c,zyf 2,
0,z,/0z, 0,0/e
1z, / 0z, 11/ e
0,0/00
0,1/01
1,0/10

L1/11

The moves satisfying the conditions is given in the definition. As the PDA reads the first half
of the input, it remains in the start state qo and pushes the input symbols on the stack. When it reads
the symbol ¢ it changes the state from go to giwithout changing the stack. On state g1 it simply
matches input symbols with the stack symbols and erases in case of a match. The moves satisfying
the conditions is given in the definition. As the PDA reads the first half of the input, it remains in the

start state go and pushes the input symbols on the stock. When it reads the symbol ¢ , it changes
the state from qo to q: without changing the stock. On state g it simply matches

R
input symbols with the stock symbols and erases in case of a match. That is, the symbol in WewW

tells the m/c when to start looking for W Once the input is extended, then the symbol zo on stock

indicates a proper match for the input to be wew®* and hence it accepts by entering state
g2, which is a final state.

_ L=[ww*iwe(0+1)]
Example 3: Consider the language

determine when to start comparison because of absence of the symbol ¢ in the middle/ The
PDA in this case has to guess non-deterministically when the middle symbol comes in the input.

. In this case there is no way to

DPDA s and FAs: DCFL s and Regular languages

Equivalence of DFA & NFA proves that non determination does not add power in case of FA s.
But it is not true in case of PDA s, i.e., it can be shown that nondeterministic PDA s are more
powerful than DPDA s. In fact, DCFL s is a class of languages that lies properly between the
class of regular languages and CFL s. The following discussion proves this fact.

Theorem :If L is a regular language, then there is some DPDA M such that L=Li(M .

Proof : Since L is regular, then exists a DFA D such that L=L1(D) .

The PDA M can be constructed from D (with an additional stock) that simulates all the moves of

D=(Q.Z(Z2\,8,2.F
D on any input just by ignoring its stock. That is if (Q’ {2},8°2,)

when 5(p.a.Z)=(9.2)Vp.g€C Such that 5(p.a)=q It is easy to see that

(%:W’Z)'ﬁ(p’e’z) iff & (g, w) = »

Again, the language wew® can be shown to be non-regular by using pumping
lemma. But, the DPDA presented in the example above accepts this language.
Hence the class of DCFL s properly includes the class of regular languages.

Context free grammar

A grammar is nothing but a set of rules to define valid sentences in any languages.
Context free Grammar (CFG) is the most important class of languages in practical applications.
They are used in compilers, text formatters and natural language processing etc.

Definition

A CFG can be defined as G=(V,T,P,S) where V is the set of non terminals, T is
the set of terminals, S is the start symbol and P is the set of productions of the form A o
where A€V, ae(VUT)*. Productions with same LHS are clubbed together. ie, if
A ol
A o2
A a3

A an then we can write A al/a2/03/......... fan
CFG derive their name from the fact that the substitution of the variable on the left of a

production can be made at any time, such a variable appears in the sentential form. It does not
depend on the symboils in the rest of the sentential form. ie, the contexts. This feature is the
consequence of allowing only a single variable on the left side of the production.

If a CFG is given, we can infer whether a string ‘W’ can be generated by G wither
by deriving ‘W’ from S or S from ‘W’. Former one is called “derivation” and latter
procedure is called “recursive inference”.

Leftmost and Rightmost Derivations

In CFG, at each step, one non terminal is replaced by its RHS. In general, they
can be replaced in any order. But, there are 2 systematic derivations, a) Leftmost
derivation b) Rightmost derivation.

In leftmost derivation, at each step, leftmost non terminal is replaced by its RHS.
The symbol ==> is used to denote leftmost derivation. The corresponding sentential
form is called “left sentential form”.

In rightmost derivation, at each step, rightmost non terminal is replaced by its RHS. The
symbol ==> is used to denote rightmost derivation. The corresponding sentential form is called
“right sentential form”.

Eg: Let regular expression (atb)(a+b+0+1)*
Regular grammar to specify the expression is:
E E+E/ E-E/ E*E/I

| la/Ib/10/11/a/b

Let w=all*b+a

Leftmost derivation Rightmost derivation

E==>E+E E==>E+E
==>E*E+E ==>E+|
==>|*E+E ==>E+a
==>|1*E+E ==>E*E+a
==>|11*E+E ==>E*|+a
==>all*E+E ==>E*b+a
==>all*I+E ==>|*b+a
==>all*b+E ==>|1*b+a
==>all1*b+l ==>|11*b+a
==>all*b+a ==>all*b+a

Derivation tree (Parse tree)
The derivation in a CFG can be represented by using trees called ‘derivation tree’
or ‘parse tree’. A derivation tree for a CFG is a tree satisfying the following :
)] every vertex has a label which is a variable (non terminal) or terminal.
i) The root has label which is non terminal
iii) The label of an internal vertex is a variable.
ie, a derivation tree is a labeled tree in which each internal node is labeled by a non
terminal and leaves are labeled by terminals. Strings formed by labels of the leaves traversed
from left to right is called the ‘yield of the parse tree’. le, the yield of a derivation tree is the
concatenation of the labels of the leaves without repetition in the left-to-right ordering.
Eg: Let G=({S,A},{a,b},P,S) where P is defined
as S aAS/a
A SbA/ba/SS
Show that S=*=>aabbaa and construct a derivation
tree. Solution
S aAS
aSbAS

aabAS
aabbaS
aabbaa (by leftmost derivation)

Ambiguity in CFGs
It is possible that a sentence might have 2 different parse trees with respect a
given grammar G. a CFG G is said to be ambiguous if there is a sentence which has
more than one parse tree. ie, the same terminal string may be the yield of 2 parse trees.
A terminal string weL(G) is ambiguous if there exists 2 or more derivation trees for w.

Eg:S S+S S S*S
a+S S+S*S
a+S*S a+S*S
a+a*S a+a*S

a+a*b a+a*b

Ambiguity is basically the property of the grammar and not the language. Same language
may have more than one grammar. Some are ambiguous and others are unambiguous.

Unambiguous grammar for the above
a*b+b is E E+T/T
TT*INI
la/lb/a/b

However, there exists language for which every grammar is ambiguous. Such
languages are termed “inherently ambiguous”. A language L is said to be inherently
ambiguous if every grammar for it is ambiguous.

Simplification of CFGs
Here there are some procedures for producing equivalent, but simpler
grammars for a given grammar. Major steps are
)] Removal of useless symbols(non terminal)
1)) Removal of unit productions

iii) Removal of e(null) productions

(i) Removal of useless symbols(non terminal)

Here we are going to identify those symbols which do not play any role in the
derivation of any string ‘w’ in L(G). These symbols are called useless symbols. And then
eliminate the identified production, which contains useless symbols, from the CFG.

A symbol in CFG is useful if and only if
a) Y=*=>w, where welL(G) and w is in T*. ie, Y leads to a string of terminals. Here Y is
said to be “generating”.

b) if there is a derivation S=*=> aYB=*=>w where welL(G) for some «,; then Y is said
to be “reachable’.

So surely a symbol that is useful will be both generating and reachable.
Therefore the simplification of CFG involves the following steps.

)] Identify non-generating symbols in the given CFG and eliminate those
productions which contain non generating symbols.
i) Identify non-reachable symbols in the grammar and eliminate those productions

which contain non reachable symbols.
After this process, CFG will have only useful symbols.
Eg: Remove useless symbols from the following grammar

S AB/a

Ab
Solution:

Here B is a non generating symbol. Since B is not deriving any terminals. So eliminate
S AB from CFG. So we get,

Sa

Ab

Here A is a non reachable symbol, since it cannot be reached by starting non-terminal
S. so we can eliminate A b, and now the reduced CFG is

S a

(ii) Removal of unit production

A production of the form non-terminal one non-terminal ie a production of the
form A B is called “unit production”. Following algorithm can be used to eliminate the
unit production.

Algorithm

While(there exists a unit production, A B)

{
select a unit production A B, such that there exist a production B «,
where o is a terminal.
for(every non-unit production B o)
add a production A o to the grammar
eliminate A B from the grammar
}
eg: Remove unit productions from the
CFG S AB
AaB
CbCD
DEEa
Solution:
Here unit productions are
B C
CD

D E

Here we cant remove the productiorl B C since C D; ie, D is not a terminal. Similar is the case for C D since D E. But
for D E, this can be eliminated since there is a production E a Therefore this can be changed to the producﬁon D a. so the

grammar becomes,
SABAa
BC/bC

DDaEa

Now we can remove C D by D a, it becomes C a Therefore,

SABAa
BC/bCa

DaEa

B C, Ca==>BaTherefore,

S AB
A a
B a/b

All others are useless. So this is the reduced grammar.

(ii) Removal of e (null) production

We have to eliminate productions of the form A €, which are called €-productions. If € is in L(G), we cannot eliminate all

€-productions from G, but if € is not in L(G), we can eliminate all €-productions from G.

In a given CFG, we call a non-terminal N nullable QC theve is a
proo{uction NEor
there is a derivation that starts at N and leads to € ie, N==> €

To eliminate €—producﬁons from a grammar G we use the fo“ow'mg technique.
If A € is a production to be eliminated then we look for all productions, whose right side contains A, and replace each
occurrence of A in each of these productions to obtain the non €-productions. Now these resultant non €-productions must be

added to the grammar to keep the language generated the same.

eg:SaAA
b/ €

Solution:

Here A € is €-production. Put € in place of A at right side of productions and add
the resulted productions to the grammar. So we get,

S a

Now add this new productions to keep the language generated by this grammar
same. Therefore,

S aA
SaA

b
Normal Forms for CFGs

There are two important standard forms for CFGs:
)] Chomsky Normal Form(CNF)
1)) Greibach Normal Form(GNF)
For any CFG, we can construct equivalent grammars in CNF and GNF.

Chomsky normal form

Any non-empty context-free language without €, has a grammar G all of whose
productions are of the form

1.A— BC,or

2.A—a

Furthermore, G has no useless symbols.
Note: If the language has @, then we can get an “almost” Chomsky Normal Form

grammar for it, by adding the rule S’ — S|e to it.

Preliminary lIdeas

Given a grammar G = (V, T, S, P), we need to produce a grammar G1 that is in
Chomsky Normal Form.

LetG'= (V' T, S, P’) be the grammar obtained after eliminating € -productions, unit
productions, and useless symbols from G.

If A— xis arule of G', where x € V'U T, then x € T, because G' has no unit

productions. So A — x is in correct form.

All remaining productions are of form A — X1X2 + = *Xnwhere Xi€ V'UT,n2>2. We

will put these rules in the right form by applying the following two transformations:
1. Make all the bodies of these rules to consist only of variables

2. Make all the right hand sides of length 2.

Removing Terminals from Long Bodies

Let A— X1X2 - - -Xn with Xi being either a variable or a terminal. We want have rules
where all the Xi are variables.

Consider A — BbCdefG. How do you remove the terminals?

Solution: For each a, b, ¢ ... € T add variables Xa,Xo,Xc, . . . with productions Xa — a, Xo — b, .

. .. Then replace the production A — BbCdefG by A — BXoCXaXeXiG

Reducing right-hand sides to length 2

Now all productions are of the form A - aor A— B1B2 - - -Bn, wheren =2 and Biis a
variable.

How do you eliminate rules of the form A — BiB2 . . .Bn where n

> 27 Replace the rule by the following set of rules

A — BiBen)

Ben — B2Ban

B@an — BsBun

B(n—1,n) — Bn—1Bn
where Bin are “new” variables.

Example 1:
Convert: S — aA|bB|b, A — Baalba, B — bAAbJab, into Chomsky Normal Form.

Step 1: Eliminate ¢-productions, unit productions, and useless symbols.
This grammar is already in the right form.

Step 2: Remove terminals from the bodies of long rules. New grammar is:

Xa — a, Xb — b, S — XaA|XbB|b, A — BXaXa|XbXa, and B — XbAAXb|XaXb
Step 3: Reduce the right-hand side of rules to be of length at most 2.

New grammar replaces A — BXaXa by rules A — BXaa, Xaa — XaXa,

and B — XbAAXb by rules B — XbXAAb, XAAb — AXAb, XAb — AXb

Example 2:

S — eBlbA
A — aleS|hAA
B — bjbS|eBB
A—sa S—2aB : §— AB
B—b A —a
S—+bA : S5 BA
B, — b
A—=al : A= A
A, =+ o
A—+bAA : A ByA:
By, =+ b
Az —+ AA
B—bS : B BiS
By =+ b
B —+aeBB : B — Ah,
Ay~ o
B, —+ BB

Example 3: Consider the CFG: £ %€ generating the language * {adu| n20}

. (e} . >
we will construct a CNF to generate the language ~ &) e ladul n 2T}

>
e Solutions : We first eliminate € -productions (generating the language {a”b"l # ‘1}

)

using the procedure already described to get = @5 |4
e Step 1 : Introduce nonterminals A, B and replace these productions with

S—> ASE| AB, A—a, B—b

« Step 2 : Introduce nonterminal C and replace the only production & — 455

(which is not allowable form in CNF) with & — 4C and €' — 455
o The final grammar in CNF is now

e S ACABC
= SB
A2
B™?b

Greibach normal form

In computer science, to say that a context—ﬁ'ee grammar is in Greibach normal form (GNF) means that all producﬁon

rules are of the fown:

or

where A is a nonterminal symbo[, a is a terminal symbo[, Xisa (possib[y empty) sequence of nonterminal symbo[s not inc[uding the start
symbo[, Sis the start symbo[, and Ais the null string.

Observe that the grammayr must be without leﬁ recursions.

Every contextfree grammar can be transformed into an equivalent grammar in Greibach normal fovm. (Some deﬁniﬁons do
not consider the second form of rule to be pewnitted, in which case a context—ﬁfee grammar that can generate the null string
cannot be so transformed.) This can be used to prove that every context—ﬁfee [anguage can be accepted by a non-deterministic

pushdown automaton.

Given a grammar in GNF and a derivable string in the grammar with [ength n, any top-down parser will halt at depth n.

Greibach normal form is named aycter Sheila Greibach.

Example : A= BBB™ AC|aC™ AB/BA/a.Wewill construct an equivalent CFG in GNF.

Step 1: Renaming the nonterminal, we get

4= 44
4= A4 a
& —> A4 | 44 |a

Step 2 : 4 -productions already satisfy

A

INP. Process “% - and 4;

* -productions to
enforce the INP. First consider 4, -productions:

Apply lemma 2 to TRl obtaining 4= A |a . Now apply lemma 1 to eliminate
left-recursion

We get

4 —oald,
Ay~ 44444,

which satisfy the INP property.

The resulting grammar is

A= A4
4 —alad,

Ay = 44| 444,
A A4 44|

4= A4

Next consider 4 -productions. Applying lemma 2 to we get

444444 |a

Applying lemma 2 again on the first two 4 -productions above we get

&~ ady 4 |ad Ay 4 |ad [ad)4 |a

Now, all productions satisfy the INP.

The resulting grammar is:

A 44|
4 —alad,

Ay > 4| 444,
& —ady 4y |ad 44 |ad |ad 4 |a

Step 3: All 4, -productions and 4, -productions are already in GNF. Apply
lemma 2 to 4 -productions, to get Hyp—vadi|adidy .

Similarly, applying lemma 2 to 4 -production we get

Ay >ak|ad | akd, [ad, 44,

All the productions are in GNF now. So, the resulting equivalent grammar in GNF is

A a4, |ad, 4
Ay —ak|ad A |ad A, |ad A4,
4 —>alad,

& —ady 4y |ad 44 |ad |ad 4 |a

Pumping Lemma for Context free lanquages

The pumping lemma for context-free languages gives a method of generating
an infinite number of strings from a given sufficiently long string in a context-
free language LIt is used to prove that certain languages are not context-free.
The construction we make use of in proving pumping lemma yields some
decesion algorithms regarding context-free languages)

Lemma 6.3 Let G be a context-free grammar in CNF and 7 be a derivation
tree in G. If the length of the longest path in 7 is less than or equal to &, then
the yield of 7 is of length less than or equal to 2*'.

Proof We prove the result by induction on k, the length of the longest path
for all A-trees (Recall an A-tree is a derivation tree whose root has label A).

When the longest path in an A-tree is of length 1, the root has only one son
whose label is a terminal (when the root has two sons, the labels are variables).
So the yield is of length 1. Thus, there is basis for induction.

Assume the result for k — 1 (k > 1). Let 7 be an A-tree with a longest path
of length less than or equal to k. As k > 1, the root of 7 has exactly two sons
with labels A; and A,. The two subtrees with the two sons as roots have the
longest paths of length less than or equal to k — 1 (see Fig. 6.12).

If w; and w, are their yields, then by induction hypothesis, |w; | < 252,
|wy| € 2¥2 So the yield of T = wyw,, | wyw, | < 262 4 242 = 2%-1 By the
principle of induction, the result is true for all A-trees, and hence for all
derivation trees.

Theorem 6.10 (Pumping lemma for context-free languages). Let L be a
context-free language. Then we can find a natural number n such that:

(i) Every z € L with | z| 2 n can be written as uvwxy for some strings
u, v, w, X, y.
(ii) |vx| 2 1.
(iii) |vwx| < n.

(iv) uv"w,\J‘y € L forall k 2 0.

Proof By Corollary 1 of Theorem 6.6, we can decide whether or not A € L.
When A € L, we consider L — {A} and construct a grammar G = (Vy, Z, P, S)
in CNF generating L — {A} (when A ¢ L, we construct G in CNF generating
L).

Let |Vy| = m and n = 2™ To prove that n is the required number, we
start
with z € L, |z| 2 2™, and construct a derivation tree T (parse tree) of z. If
the length of a longest path in 7 is at most m, by Lemma 6.3, | z| < 2™ (since
z is the yield of 7). But |z| = 2™ > 2"!. So T has a path, say T, of length
greater than or equal to m + 1. T has at least m + 2 vertices and only the last
vertex is a leaf. Thus in I" all the labels except the last one are variables. As
| Vy| = m, some label is repeated.

We choose a repeated label as follows: We start with the leaf of I" and
travel along I upwards. We stop when some label, say B, is repeated. (Among
several repeated labels, B is the first.) Let v, and v, be the vertices with label
B, v, being nearer the root. In I, the portion of the path from v, to the leaf has
only one label, namely B, which is repeated, and so its length is at most m + 1.

Let 7, and T, be the subtrees with v, v, as roots and z;, w as yields,
respectively. As I' is a longest path in 7, the portion of I" from v, to the leaf
is a longest path in 7| and of length at most m + 1. By Lemma 6.3, |z;| 2"
(since z; is the yield of T)).

For better understanding, we illustrate the construction for the grammar
whose productions are § — AB, A — aB|a, B — bA|b, as in Fig. 6.13. In
the figure,

r=S—->A->B—->A->B->b

z = ababb, z, = bab, w=b

v= ba, X = A, u = a, y=b>b

Proof (i) We have to prove the ‘only if* part. If z € L with |z| 2 n, we
apply the pumping lemma to write z = uvwxy, where 1 < |vx| < n. Also,
uwy € L and |uwy| < |z|. Applying the pumping lemma repeatedly, we can
get 7 € L Slimt‘r‘/ﬁ n. Thus (i) is proved.

(ii) If z € L such that n < | z| < 2n, by pumping lemma we can write
z = uvwxy. Also, wwx*y € L for all k > 0. Thus we get an infinite number
of elements in L. Conversely, if L is infinite, we can find z € L with |z| 2 n.
If |z| < 2n, there is nothing to prove. Otherwise, we can apply the pumping
lemma to write z = uvwxy and get uwy € L. Every time we apply the pumping
lemma we get a smaller string and the decrease in length is at most n (being
equal to |vx|). So, we ultimately get a string 2’ in L such that n < || < 2n.
This proves (ii). |

Note: As the proof of the corollary depends only on the length of vx, we can
apply the corollary to regular sets as well (refer to pumping lemma for regular
sets).

The corollary given above provides us algorithms to test whether a given
context-free language is empty or infinite. But these algorithms are not efficient.
We shall give some other algorithms in Section 6.6.

We use the pumping lemma to show that a language L is not a context-
free language. We assume that L is context-free. By applying the pumping
lemma we get a contradiction.

The procedure can be carried out by using the following steps:

Step 1 Assume L is context-free. Let n be the natural number obtained by
using the pumping lemma.

Step 2 Choose z € L so that |z| = n. Write z = uvwxy using the pumping
lemma.

Step 3 Find a suitable k so that uv*wx*y ¢ L. This is a contradiction, and so
L is not context-free.

Example 1

Show that L = {a"b"c"|n 2 1} is not context-free but context-sensitive.

Solution

We have already constructed a context-sensitive grammar G generating L (see
Example 4.11). We note that in every string of L, any symbol appears the
same number of times as any other symbol. Also a cannot appear after b, and
¢ cannot appear before b, and so on.

Step 1 Assume L is context-free. Let n be the natural number obtained by
using the pumping lemma.

Step 2 Let z = a@"b"c". Then |z| = 3n > n. Write z = uvwxy, where |vx| 2 1,
i.e. at least one of v or x is not A.

(11i) Algorithm for deciding whether a regular language L is empty.

Construct a deterministic finite automaton M accepting L. We construct
the set of all states reachable from the initial state g, We find the
states which are reachable from g, by applying a single input symbol.
These states are arranged as a row under columns corresponding to
every input symbol. The construction is repeated for every state
appearing in an earlier row. The construction terminates in a finite
number of steps. If a final state appears in this tabular column, then
L is nonempty. (Actually, we can terminate the construction as soon
as some final state is obtained in the tabular column.) Otherwise, L
is empty.

(iv) Algorithm for deciding whether a regular language L is infinite.

s

Construct a deterministic finite automaton M accepting L. L is infinite
if and only if M has a cycle.

Applications of PDA — Parsing

In a natural language, parsing is the process of splitting a sentence into words.
There are two types of parsing, namely the top-down parsing and the bottom-
up parsing. Suppose we want to parse the sentence “Ram ate a mango.” If NP,
VP, N, V, ART denote noun predicate, verb predicate, noun, verb and article,
then the top-down parsing can be done as follows:
S — NPVP

— Name VP

— Ram V NP

— Ram ate ART N

— Ram ate a N

— Ram ate a mango

The bottom-up parsing for the same sentence is

Ram ate a mango — Name ate a mango
— Name verb a mango
— Name V ART N
- NP VN P
— NP VP
- S

In the case of formal languages, we derive a terminal string in L(G) by
applying the productions of G. If we know that w € X* in L(G), then § = w.
The process of the reconstruction of the derivation of w is called parsing.
Parsing is possible in the case of some context-free languages.

Parsing becomes important in the case of programming languages. If a
statement in a programming language is given, only the derivation of the
statement can give the meaning of the statement. (This is termed semantics.)

As mentioned earlier, there are two types of parsing: top-down parsing and
bottom-up parsing.

In top-down parsing, we attempt to construct the derivation (or the
corresponding parse tree) of the input string, starting from the root (with label
S) and ending in the given input string. This is equivalent to finding a leftmost
derivation. On the other hand, in bottom-up parsing we build the derivation
from the given input string to the top (root with label §).

In this section we present certain techniques for top-down parsing which can
be applied to a certain subclass of context-free languages. We illustrate them
by means of some examples. We discuss LL(l) parsing, LL(k) parsing, left
factoring and the technique to remove left recursion.

EXAMPLE 7.10

Let G = ({S, A, B}, {a, b}, P, S) where P consists of S — aAB, S — bBA,
A—>bS,A > a B — as, B— b. w= abbbab is in L(G) . Let us try to
get a leftmost derivation of w. When we start with § we have two choices:
S — aAB and § — bBA. By looking at the first symbol of w, we see that
S — bBA will not yield w. So we choose § — aAB as the production to be
applied in step 1 and we get § = aAB. Now consider the leftmost variable
A in the sentential form aAB. We have to apply an A-production among the
productions A — bS and A — a. A — a will not yield w subsequently since
the second symbol in w is b. So, we choose A — bS and get S = aAB =
abSB. Also, the substring ab of w is a substring of the sentential form abSB.
By looking ahead for one symbol, namely the symbol b, we decide to apply
S — bBA in the third step. This leads to S = aAB = abSB = abbBAB. The
leftmost variable in the sentential form abbBAB is B. By looking ahead for
one symbol which is b, we apply the B-production B — b in the fourth step.
On similar considerations, we apply A — a and B — b in the last two steps
to get the leftmost derivation.

S = aAB = abSB = abbBAB = abbbAB = abbbaB = abbbab

Thus in the case of the given grammar, we are able to construct a leftmost
derivation of w by looking ahead for one symbol in the input string. In order
to do top-down parsing for a general string in L(G), we prepare a table called
the parsing table. The table provides the production to be applied for a given
variable with a particular look ahead for one symbol.

For convenience, we denote the productions S — aAB, § — bBA, A —
bS,A - a, B —> aS and B - b by Py, P,, ..., Psc Let E denote an error.
It indicates that the given input string is not in L(G). The table for the given
grammar is given in Table 7.1.

TABLE 7.1 Parsing Table for Example 7.10

A a b
S E Pl Pz
A E P, P,
B E P, 5 P5

For example, if A is the leftmost variable in a sentential form and the first
symbol in unprocessed substring of the given input string is b, then we have to

apply Ps.

A grammar possessing this property (by looking ahead for one symbol in
the input string we can decide the production to be applied in the next step)
is called an LL(1) grammar.

EXAMPLE 7.11

Let G be a context-free grammar having the productions S — F + §, § —
Fx§8, 8= Fand F — a. Consider w = a + a a. This is a string in L(G).
Let us try to get the top-down parsing for w.

Looking ahead for one symbol will not help us. For the string a + a * a,
we can apply F — a on seeing a. But if a is followed by + or *, we cannot
apply a. So in this case it is necessary to look ahead for two symbols.

When we start with S we have three productions S - F + S, S — F=* S
and § — F. The first two symbols in a + a * a are a +. This forces us to
apply only S — F + S and not other S-productions. So, § — F + S. We can
apply F — anow to get § = F + § = a + S. Now the remaining part of
w is a + a. The first two symbols a * suggest that we apply S — F = § in
the third step. So, S = a + § = a + F « S. As the third symbol in w is a,
we apply F — a, yielding § = a + F + S = a + a * S. The remaining part
of the input string w is a. So, we have to apply § — F and F — a. Thus the
leftmost derivation of a + a *ais S = F+ S = a+ S = a + F «
S§2a+axS=>a+axF=>a+a+*a

As in Example 7.10, we can prepare a table (Table 7.2) which enables us
to get a leftmost derivation for any input string. Py, P,, Pz and P, denote the
productions S - F + S5, S = F + §, § — F and F — a. E denotes an error.

TABLE 7.2 Parsing Table for Example 7.11

A a b L aa at ax

S E P E E E P, P,

[E Ps E E E Py P
+a ++ +% *g e * %
S E & E E = =
= E E E E E E

For example, if the leftmost variable in a sentential form is F and the next
two symbols to be processed are a =, then we apply Py, i.e. F'— a. When we
encounter * @ as the next two symbols, an error is indicated in the table and
so the input string is not in L(G).

A grammar G having the property (by looking ahead for k symbols we
derive a given input string in L(G)), is called an LL(k) grammar. The grammar
given in Example 7.11 is an LL(2) grammar.

In Examples 7.10 and 7.11 for getting a leftmost derivation, one
production among several choices was obtained by look ahead for & symbols.
This kind of nondeterminism cannot be resolved in some grammars even by
looking ahead.

This is the case when a grammar has two A-productions of the form A —
off and A — ay. By a technique called ‘left factoring’, we resolve this
nondeterminism. Another troublesome phenomenon in a context-free grammar
which creates a problem is called left recursion. A variable A is called left
recursive if there is an A-production of the form A — Aa. Such a production
can cause a top-down parser into an infinite loop. Left factoring and technique
for avoiding left recursion are provided in Theorems 7.6 and 7.7.

Theorem 7.6 Let G be a context-free grammar having two A-productions of
the foom A — off and A - ay If A — aff and A — ay are replaced by
A— oA A" — PBand A" — ¥ where A" is a new variable then the resulting
grammar is equivalent to G.

Proof The equivalence can be proved by showing that the effect of applying
A — affand A — ayin a derivation can be realised by applying A — @A’,
A" - B and A” - yand vice versa.

Note: The technique of avoiding nondeterminism using Theorem 7.6 is
called left factoring.

Theorem 7.7 Let G be a context-free grammar. Let the set of all
A-productions be {A — Aoy, ..., A > Aa,, A = B, ..., A = B,}. Then
the grammar G’ obtained by introducing a new variable A" and replacing all
A-productions in Gby A —» BA", ..., A > BAA > oA, ..., . A" - aA’
and A” — A is equivalent to G.

Proof Similar to proof of Lemma 6.3.

Theorems 7.6 and 7.7 are useful to construct a top-down parser only for
certain context-free grammars and not for all context-free grammars. We
summarize our discussion as follows:

Construction of Top-Down Parser

Step 1 Eliminate left recursion in G by repeatedly applying Theorem 7.7 to
all left recursive variables.

Step 2 Apply Theorem 7.6 to get left factoring wherever necessary.

Step 3 If the resulting grammar is LL(k) for some natural number k, apply
top-down parsing using the techniques explained in Examples 7.10 and 7.11.

EXAMPLE 7.12

Consider the language consisting of all arithmetic expressions involving +, *,
(‘and) over the variables xI and x2. This language is generated by a grammar

G=({T, F, E} X, P, E), where £ = {x, 1, 2, +, *, (,)} and P consists of

EFES> FE4+ T F— (F)
E—>T F — xl

T—>T+F F — x2

T— F

Let us construct a top-down parser for L(G).

Step 1 We eliminate left recursion by applying Theorem 7.7 to the left
recursive variables E and 7. We replace E - E+ T and £ — T by E — TE’,
E' - + TE' and E" — A (E’ is a new variable). Similarly, T — T * F and
T — F are replaced by 7 — FT’, T — = FT” and T — A. The resulting
equivalent grammar is

G, = (T, F, E T, E}, L, P, E), where P’ consists of

E— TE’ T A

E'— +TE’ F— (E)
E'— A F— xl

T FT’ F— x2
T'— «FT’

Step 2 We apply Theorem 7.6 for left factoring to F — x1 and F — x2 to
get new productions F — xN - N —- 1l and N — 2.
The resulting equivalent grammar is

G, = ({T, F, E, T, E}, Z, P”, E) where P” consists of

PR <3 TE Pe i Ties K
P>. E' — +TE’ P,: F - (E)
Py E' — A Py: F — xN
P T — FTI’ Py: N -1
Ps: T" — « FT’ Po: N - 2

Step 3 The grammar G, obtained in step 2 is an LL(l) grammar. The
parsing table is given in Table 7.3.

TABLE 7.3 Parsing Table for Example 7.12

A X 1 2 + % ()
E E P, E E E E P, E
4 E P, E E E E P, E
F E Py E E E E P; E
T Ps (= E E E Ps E Ps
E* P. E E E P E E P;
N E E P Pio E E E /3

We have seen that pda’s are the accepting devices for context-free languages.
Theorem 7.3 gives us a method of constructing a pda accepting a given context-
free language by empty store. In certain cases the construction can be modified
in such a way that a leftmost derivation of a given input string can be obtained
while testing to know whether the given string is accepted by the pda. This
is the case when the given grammar is LL(1). We illustrate this by
constructing a (deterministic) pda accepting the language given in
Example 7.10 and a leftmost derivation of a given input string using the pda.

EXAMPLE 7.13

For the grammar given in Example 7.10, construct a deterministic pda
accepting L(G) and a leftmost derivaiton of abbab.
Solution

We construct a pda accepting L(G)$ ($ is a symbol indicating the end of the
mput string). This is done by using Theorem 7.3. The transitions are

0(q. A, A)= {(gq, ®)|A = ais in P}
8(g, t,)= {(g, A)} for every ¢ in X

This pda is not deterministic as we have two S-productions, two
A-productions, etc. In Example 7.10 we resolved the nondeterminism by
looking ahead for one more symbol in the input string to be processed. In the
construction of pda this can be achieved by changing the state from q to q,
on reading . When the pda is in state g, and the current symbol is § we
choose the transition resulting in (g, aAB). Now the deterministic pda
accepting L(G)$ by null store is

A =Up. ¢ 90 @}, {a. b, 8}, {S, A, B, a, b, Z}, 6, p, Z), 9)
where & is defined by the following rules:
Ry : 8(p. A, Zy) = (q,)
Ry : 8(q, a, A) = (g, N
Ry : 8(qs A, a) = (q. e
Ry : 6(q, b, A) = (g5 N
Rs : 8(qs A, b) = (q, e
Re : 6(qu A, S) = (q,, aAB)
Ry : 6(gp A, S) = (g4 bBA)
Ry : 6(q. A, A) = (g, @)
Ry : 8(qp A, A) = (g, bS)

Ry : 8(q, A, B) = (g, aS)
Ry, : 6(qp A, B)= (gqp, b)
Ry: 8@ 8 Z) =(@ AN

Here R, changes the initial ID (p, w, Z) into (g, w, SZ). R, and Ry are for
remembering the next symbol. Re—R); are simulating the productions. R; and Rs
are for matching the current input symbol and the topmost symbol on PDS and
for erasing it (in PDS). Finally, R;, is a move for erasing Z and making the
PDS empty when the last symbol $ of the input string is read.

To get a leftmost derivation for an input string w, apply the unique
transition given by R, to R, When we apply Rq to R;;, we are using a
corresponding production. By recording these productions we can test whether
w € L(G) and get a leftmost derivation. The parsing for the input string
abbbab is given m Table 7.4.

The last column of Table 7.4 gives us a leftmost derivation of abbbab. It
is $ = aAB = abSB = abbBAB = abbbAB = abbbaB = abbbab.

TABLE 7.4 Top-down Parsing for w of Example 7.13

Step State Unread input Pushdown stack Transition Production
used applied
1 p abbbab$ Zy — —
2 q abbbab$ Sz, Ry
3 Ga bbbab$ Sz, R,
4 Ga bbbab$ aABZ, Rs S — aAB
5 q bbbab$ ABZ, R;
6 Qb bbab$ ABZ, R4
7 Qb bbab$ bSBZ, Rq A — bS
8 q bbab$ SBZ, Rs
9 Qs bab$ SBZ, Ry
10 Qs bab$ bBABZ, R; S — bBA
1 q bab$ BABZ, Rs
12 Qb ab$ BABZ, R4
13 Qb ab$ bABZ, Ry B-b
14 q ab$ ABZ, Rs
15 Qs b$ ABZ, R,
16 ga b$ aBZ, Rs A-—a
17 q b$ BZ, Rs
18 9b $ BZ, Rs
19 gs $ bZ, Ry B-b
20 q $ Zy Rs
21 q A A Ry2

Bottom-up Parsing

In bottom-up parsing we build the derivation tree from the given input string
to the top (the root with label §). For certain classes of grammars, called weak
precedence grammars, we can construct a deterministic pda which acts as a
bottom-up parser. We illustrate the method by constructing the parser for the
grammar given in Example 7.12.

In bottom-up parsing we have to reverse the productions to get S finally.
This suggests the following moves for a pda acting as bottom-up parser.

(1) d(p, A, o) = {(P, A)|there exists a production A — @}
(i) 8(p, o, A) = {(p, o)} for all ¢ in X.

Using (i) we replace o' on the basis by A when A — « is a production.
The input symbol & is moved onto the stack using (ii). For acceptability, we
require some moves when the PDS has S or Z; on the top.

As in top-down parsing we construct the pda accepting L(G)$. Here we
will have two types of operations, namely shifting and reducing. By shifting
we mean pushing the input symbol onto the stack (moves given by (ii)). By
reducing we mean replacing & by A when A — « is a production in G
(moves given by (i)).

At every step we have (i) to decide whether to shift or to reduce (i1) to
choose the prefix of the string on PDS for reducing, once we have decided to
reduce. For (1) we use a relation P called a precedence relation. If (a, b) € P
where a is the topmost symbol on PDS and & is the input symbol then we
reduce. Otherwise we shift b onto the stack. Regarding (i1). we choose the
longest prefix of the string on the PDS of the form &’ to be reduced to A (when
A — a1s a production).

We illustrate the method using the grammar given in Example 7.12.

Introduction to Turing Machine

Neither Finite Automata(FA) nor Pushdown Automata(PDA) can be regarded as
truly general models for computers, since they are not capable of recognizing some type
of languages, such as {anb”cn/n>=0}. So the next model of automata is Turing Machine.

In 1930’s several mathematicians began to think about what it means to be
able to compute a ‘function’. Alan M. Turing and Alenzo Church arrived at same
conclusion: “a function is computable if it can be computed by a Turing machine”.

Alan Turing proposed the Turing Machine as a model of ‘any possible
computation’. Turing Machines are more powerful than PDA. This can do general
purpose computations. Church —Turing thesis that claims that there exists no
model of computation which is more powerful than the Turing Machine.

Turing Machine

Basic model of a Turing machine consists of
iX) a two way infinite tape,
X) a read/write head and
Xi) a finite control.

Input Tape

Read Write Head

Finite
Control

At any time, action of a Turing machine depends on the current state and the
input symbol and involves (i) change of state (ii) writing a symbol in the cell scanned
(iif) head movement to the left or right and (iv) Turing machine halts or not halts. A
Turing machine may utilize the tape cells beyond the input limits and ‘Blank’ cell
plays a significant role in the working of a Turing machine. Turing machine halts in
any situation for which a transition is not defined. Unlike the previously dealt
automata, it is possible that a Turing machine may not halt. At any state a Turing
machine can halt or not halt. ie, it ends in accepting state if it successfully
halts(accept halt). Otherwise it halts in any non accepting state (reject halt).

4.2

Formal Definition

A Turing machine can be formally defined as M=(Q,Z,T,0,qo,B,F)

All symbols are same except that T,0,B. Here T is a finite non empty set of tape symbols or tape alphabets, B is the
special blank symbol and B € T and & is the transition function defined as,

§:QxT QxTx{LR}

{LR} represents the movement of the head.

Language Acceptance by Turing Machine

A string w is accepted by a Turing machine if qow |--*-- 0iqQL2 for some ‘q’ in F.
and 0,02 € T, and Turing machine has no ﬁ/Lrther move.

M does not accept ‘W g(‘ the machine M either halts in non accepting state or does not halt. Language

accepted by a Turing machine is defined as
L(M)={wqow |--*--0uqOi2 for some q in F and there is no further move}

Representation of a Turing Machine

We can describe a Turing machine using

(iii) instantaneous descriptions using move relations

Instantaneous Description (ID) in PDA was in terms of curvent state, input string to be pvocessed, and
topmost symbol of PDS. But in Turing machine the R/W head can move to the left also. So 1D of a Turing machine is
deﬁned in terms of the entire input string and current state. During a speciﬁc execution, conﬁguration of the Turing
machine decides ﬁ/ﬂ’the}' behavior consists of (i) state (i) non-blank portion of the tape content to the leﬁ of the head
(iii) non-blank portion of the tape content to the Vight of the head. This
is called instantaneous description (ID) and is represented by 0liq0L2. The head reads the
[eﬂmost symbo[of Q2.]fotz is empty, the head scans ‘B’. Each move changes the Turing machine ﬁrom one 1D to another. The

symbo[|—— is used to represent the move. |——*—— represents ‘sequence of moves’ or ‘rq[[exive transitive closure’ of the relation \———

Let 8(q,xi)=(p,y,R) then
X1X2........ Xi-1 ¢ Xi....xn |—”

X1x2.......... Xi-ly]{) Xi+1....xXn

(v) transition table

We give the definition of & in the form of a table called the transition table. 1f 8(q,a)=(y,0LB), we write oy
under a-column and g-row. So if we get ALY in the table,

means that O is written in the current cell, B gives the movement of the head (L/R), and ¥ denotes the new state into which Turing

machine enters.

Eg:
Present state Tape symbols
0 1 b

q oRq 1Lq2
92 olLq2 1Lq2 bRq3
93 bRqs4 bRqs

Q4 oRq4 R4 oRqs5
95 olLq2

(iii) transition diagram

In the transition diagram the labels are triples of the form (oL,3,y) where 0,3 €T and y € {L,R}. When there is a
directed edge ﬁ'om qitoqi with label (OL,B,Y), it means
that S(qi, o)=(qi, B,v).

During the processing of an input string, suppose the Tuving machine enters qi and R/W head scans the present symbo[ol.
As a result, the symbo[B is written in the cell

under R/W head. The R/W head moves to the leﬁ or Vight, depend[ng onv, and the new state is qi-

le,

(ouBy)

eg.'
Design a Turing machine to recognize all strings consisting of even number of ’s. Solution: (i) 1 is the initial state. M enters state g2 on

scanning 1 and writes b.

3) lfM is in state g2 and scans 1, it enters q and writes b.

qiis the on[y accepting state.
So M accepts a string ifit exhausts all input sym’oo[s and ﬁna”y in state qu. Symbolica“y,
M=({en,q2},{1},01,b}, 6, q1.b,{q1}) Where & is defined

by
Present state Input symbols
1 B
q XRqz BLqs
q2 XRq

Let us obtain the computation sequence of 1111. Thus
q:1111B |-- X g2 111B |-- XX 111B |-- XXX (21B |-- XXXXq1B |--

XXXg1XB As gl is accepting state. 1111 is accepted.

(1,b,R)

I s
Q (1,b,R)

Universal Turing Machine

The Turing machine that was discussed for the design till now is special-
purpose computers. Designing general purpose Turing machine is a more
complex task. We must design a machine that can accept 2 inputs, (1) input data
(2) description of computation (algorithm or program). This is precisely what a
general-purpose computer does. It accepts data and program.

A general purpose Turing machine is called ‘Universal Turing Machine
(UTM) when it is powerful enough to simulate the behavior of any computer
including Turing machine itself. ie, a UTM can simulate the behavior of an
arbitrary Turing machine over any . So a UTM is analogous to general-purpose
computer which can execute any given program.

Finite Control

v;

Description of M Internal state of M

Input to M

Modifications of basic model of TM

The TM till now discussed are not the most efficient, but it is evident that
even with very will-designed TMs, it will take a large number of states for
simulating even a simple behavior. Thus we can modify our basic model by

(a) increasing the number of R/W heads
(b) making the tape 2D or 3D
(c) adding special purpose memory (stack/special purpose registers)
All these modifications will at most speed up the operation of the machine,

but do not increase the computing power.
Variants of Turing Machine

Non-deterministic TM
One-way infinite tape TM
TM with ‘stay’ option
Multi tape TM
Multidimensional TM
Multi stack T™M

ouabhwnE

1. One-Way Infinite Tape TM

In one-way infinite tape TM, the left end is fixed. Further left movement is forbidden.
However, as we show later, this restriction does not diminish the capability of a Turing

machine. That is why, in some literature on this subject, one-way infinite TM is taken as
the basic model.

Givena TM M; = (Q. T, [, 8, qo. B.F), we can construct a one-way infinite TM M to
simulate the behaviour of M. Outline of construction is given below. Cells of a two-way
infinite tape can be indexed by the set of integers (—c0, ..., —3,-2,—1,0,1,2, 34 55:500)
and content of i-th cell can be represented by X; (as shown in the figure).

PSS P P PR P P P

If we fold the tape at position 0, the resulting tape can be considered as a 2-track one-way
infinite tape. Based on this idea, we will construct a one-way infinite TM M> to simulate
M,. M, has a two-track tape. The upper track is used to simulate the right portion of M;
and lower track simulates the left portion. Lower track of the O-th cell contains a marker
¢ (which is used to switch over the action from one track to another). The arrangement is
shown in the figure.

X(] X[X‘_) o0

c Xy | Xop | e 5

Finite control of M5 has two parts. The first part is the actual control part to simulate M;
and the second part indicates whether M is on the right side (U) or left side (L).

Formally,

M, = (Q, Z,1".8.q}. B.F)
where,

Q' = {qy}UQ x {L,U},
['= [x[Ufc)

8’ as defined by the following set of rules,
qy is the start state,

B is the blank symbol.

F' = {[p,X]|p € Fand X = L or U}.

2. Turing Machine with ‘Stay’ Option

In this model, head can move right or left or stay in the same position. A formal definition
of a TM with stay option is similar to the standard model. The only change is in the
transition function which is defined as § : Q x [— Q x [x{L,U,S}. However, this
additional facility does not enhance the capability of the Turing machine. Given a TM
M; (with stay option) = (Q, £, [,4,qo,B,F) we can construct a standard TM M to
simulate the behaviour of M;. For each transition with ‘Stay’, M goes right and goes to
a temporary state. From that témporary “state, it gets back to its original state. Formally

= (Q’, X, |'8 qo, B, F) where,
. Q'=QU({qilqi € Q}

[Each state has a corresponding temporary state]
2. §'(q,A) = 8(q,A) if 8(q,A) = (q', X,D) where D = L or R.
3. If 8(qi, A) = (q;, Y, S) then &’ includes

8'(qi, A) = (qJ{,Y.R) and
§'(qj, X) = (gj, X, L) forall X € .
[In temporary state qj' , irrespective of the symbol scanned, M2 moves left and goes
to q;].
3. Multi tape Turing Machine

We may add extra tapes to the basic model of Turing Machine. A multitape TM has k tapes
each having its own read/write head (see the figure below). Action of the TM depends on
the contents of the cells scanned and the current state and involves (i) change of state and
(ii) writing on the cells scanned and movmc' “the head (L,R or S) of each tape. Formally,
transition function of a k-tape TM is § = Q x *— Q x ([xD)X where D = {L;, R, S}.

Finite f
control

L ;

Remark: Unlike multitrack TM, head movements are independent in multitape TM.

4. Non-Deterministic Turing Machine

In non-deterministic Turing machine, at each step. there is a choice of next move. Hence,
the transition function is defined as

But, nondeterminism does not enhance the capability of a TM. Given any NDTM M, we
can construct an equivalent DTM M. An outline of construction is given below.

Any nondeterministic computation can be considered as a tree with start-Id as the root.
Branches at each node correspond to the choices at that stage.

Each path from the root corresponds to a specific sequence of choices. NDTM M,
accepts the input if there is some path in the tree from root to an accepting ID. Simulating
DTM M;, makes a systematic search for the accepting ID in the computation tree. We
use breadth first search for this purpose. Let h be the depth of the accepting ID. When we
systematically enumerate ID’s using BFS, ultimately we arrive at depth h and successfully
reach the accepting ID. Outline of M; for this BFS is given below.

If, at any step, M| has k choices, each choice can be given an index i. Similarly, any path
in the tree can be identified by a sequence number of the form iyi; . . . ix. Simulating DTM
M, has 3 tapes. Tape 1 holds the input w. Tape 2 is used to generate a sequence of integers
i1l ... 1. Tape 3 is used for actual simulation using the path as given by the sequence in
tape 2. M halts if the accepting ID is reached.

5. Multidimensional Turing Machine

(A/s a model of computation, a tape is equivalent to memory. A tape in the standard
model is linear. In actual compu?é?sf memory is organm multidimensional array.
Correspondingly, we have multidimensional tape TMs.)However, it can be shown that
multidimensional TM is equivalent to the linear tape TM. We will show how a linear tape
TM can simulate a 2-demensional TM.

CCpnten[s of a 2-dimensional TM can be considered as a sequence of lines and the symbol *
is used to separate successive lines. The symbol ** is used to mark the ends. The arrangement
is shown in the figure.

#% line 1 * line 2 * line 3 ... line k *x*

Simulating TM has two tapes. Tape 1 holds the linear representation of 2-dimensional
TM. Tape 2 holds an index to indicate the position of the head with respect to the line in which
head is present. 2-dimensional TM has left, right, up and down movements. Simulation of
left and right movements is straight forward. If it involves extending the current line, we can
shift the tape contents by one cell to the right. To simulate the ‘up’ movement, we move the
head to the beginning of the previous line (by crossing the separator *) and use the content
of tape 2 to shift the head to the corresponding position in the previous line. Simulation of
‘down’ movement is similar.

6. Multi stack Machines

A multistack TM is an automata with a read-only input tape and k-stacks. Action of the
machine depends on TOS symbol in each stack, input symbol, and the current state and
involves, (i) change omol/m stack) It can be shown that
2-stack machine is equivalent to the Turing machine. It is trivial to show that any 3-tape
TM can simulate a 2-stack machine. (Additional 2 tapes can simulate 2 stacks). Now, we
will show how a 2-stack machine M can simulate a standard Turing machine M;.

M first copies the input to the stack 1 and then copies from stack 1 to stack 2. Then, the
configuration will be such that stack | contains the tape content to the left of the head and
stack 2 contains the tape content to the right. TOS symbol of the stack 2 is the current input
symbol. If §(q,a) = q',A,R), My pops off ‘a’ from stack 2 and pushes A onto stack 1.
If 8(q,a) = (q', A,L), M3 pops off a, pushes A onto stack 2 and shifts TOS in stack 1 to
stack 2. Set of states Q and accepting states F are same in M; and M. Hence, if M halts
in an accepting state, M» also halts in an accepting state.

CONCEPTUAL TOOLS FOR CONSTRUCTION OF
TURING MACHINES

(:Ihough, the basic model is found to be powerful enough to compute any computable
function, some conceptual tools are useful to design TM’s to solve complex problems. In
this section, we shall discuss many such tools. But, it is to be noted that, these concepts
are theoretically equivalent to the basic model)ln Section 9.5, we illustrate the use of such
tools in the design of TMs to solve complex problems.

1. Memory in Finite Control

Facility of some limited memory in finite control may help Turing machine to ‘remember’
one or more (up to k) symbols for later action. Conceptually, the state is considered as an
ordered pair (q, [X,X>...X]) where q is the control part and [X;X;...X] represents
the contents of the buffer. As the set of states Q" = Q x [¥ is finite, the resulting TM is
theoretically same as the basic model.

This facility is useful in solving problems involving pattern matching, For example,
consider the recognition of L = {wcw}. To recognize a t§pical string ab%caBb, we have to
match each symbol with the corresponding symbol. If the symbol to be matched (a or b)

is stored in finite control, it will help in searching the corresponding symbol after the
separator c. In the next section, we will describe specific examples to illustrate this concept.

2. Multitrack Tape

In single track, each cell may hold a single symbol. In k-track TM, each cell can hold k
symbols, and the head can read all the k symbols. Action depends on all the symbols read.
Conceptually, multitrack TM is not different from the basic model. Only the tape alphabet
is considered as a k-tuple. If the basic tape alphabet is [, alphabet[’ for k-track TM is [X
which is finite. In the next section, we illustrate this concept by designing a 3-track TM to
add binary numbers.

3. Subroutines

When the solution involves a repeated solution of a subtask, it is useful to design a TM
for the subtask. This TM will be a subroutine of the main TM. To call the subroutine. the

main routine gives control to the start state of the subroutine. On return, subroutine gives
control to a prespecified state of the main routine. The concept is illustrated by the TM for
multiplying two unary numbers described in the next section.

Halting Problem of Turing Machine

According to Church's thesis, a TM can be treated as the most general
computing system.
Theorm:

The Halting problem of TM over X={0,1} is unsolvable. ie, the problem of
determining whether or not an arbitrary TM M over {0,1} halts for an arbitrary input x in
>¥* is unsolvable.

Proof:

Proof is by contradiction. Let M be an arbitrary TM. Let d(M) be the
encoded binary string representing M. Then the machine string pair will have
d(M)*x as its encoded description. According to our assumption HP is solvable.
Hence there exists an algorithm P which decides HP. ie,

= if M halts for input x, then P reaches an accept halt.

= if M does not halt for input x, then P reaches a reject halt.
Let us construct a new algorithm Q based on P as follows:

= it takes d(M) as input and copies it to obtain d(M)*d(M) and then applies
algorithm P to this input(ie, d(M)*d(M)),

= Q loops for ever if P reaches an accept halt and Q halts if P reaches a reject halt.

By Church’s thesis, there exists a Turing machine say M’, which can execute the
algorithm Q. Since the algorithm P, as also Q, works for an arbitrary machine M,
Q also works for M’, so we take M=M'. From (d) and (a) we can conclude that M’
loops for ever if M’ halts. From (d) and (b) we conclude that M’ halts if M’ loops
for ever. Thus, we obtain the conclusion “ M’ halts if and only if M’ loops for ever”.
This is a contradiction and HP is unsolvable.

	page3
	page5
	page15
	page17
	page19
	page21
	page23
	page25
	page27
	page29
	page31
	page33
	page35
	page39
	page43
	page47
	page51
	page57
	page11
	page13
	page41
	page45
	page49
	page53
	page55
	page59
	page61
	page63
	page65
	page67
	page69
	page71
	page7

