
39

2 INTRODUCTION TO
CRYPTOGRAPHY

2.1 WHAT IS CRYPTOGRAPHY?

The word cryptography comes from the Greek words κρυπτο (hidden or secret) and γραφη
(writing). Oddly enough, cryptography is the art of secret writing. More generally, people think of
cryptography as the art of mangling information into apparent unintelligibility in a manner allow-
ing a secret method of unmangling. The basic service provided by cryptography is the ability to
send information between participants in a way that prevents others from reading it. In this book we
will concentrate on the kind of cryptography that is based on representing information as numbers
and mathematically manipulating those numbers. This kind of cryptography can provide other ser-
vices, such as

• integrity checking—reassuring the recipient of a message that the message has not been
altered since it was generated by a legitimate source

• authentication—verifying someone’s (or something’s) identity

But back to the traditional use of cryptography. A message in its original form is known as
plaintext or cleartext. The mangled information is known as ciphertext. The process for produc-
ing ciphertext from plaintext is known as encryption. The reverse of encryption is called decryp-
tion.

While cryptographers invent clever secret codes, cryptanalysts attempt to break these codes.
These two disciplines constantly try to keep ahead of each other. Ultimately, the success of the
cryptographers rests on the

ciphertextplaintext plaintext
encryption decryption

40 INTRODUCTION TO CRYPTOGRAPHY 2.1.1

Fundamental Tenet of Cryptography

If lots of smart people have failed to solve a problem,
then it probably won’t be solved (soon).

Cryptographic systems tend to involve both an algorithm and a secret value. The secret value
is known as the key. The reason for having a key in addition to an algorithm is that it is difficult to
keep devising new algorithms that will allow reversible scrambling of information, and it is diffi-
cult to quickly explain a newly devised algorithm to the person with whom you’d like to start com-
municating securely. With a good cryptographic scheme it is perfectly OK to have everyone,
including the bad guys (and the cryptanalysts) know the algorithm because knowledge of the algo-
rithm without the key does not help unmangle the information.

The concept of a key is analogous to the combination for a combination lock. Although the
concept of a combination lock is well known (you dial in the secret numbers in the correct sequence
and the lock opens), you can’t open a combination lock easily without knowing the combination.

2.1.1 Computational Difficulty

It is important for cryptographic algorithms to be reasonably efficient for the good guys to
compute. The good guys are the ones with knowledge of the keys.1 Cryptographic algorithms are
not impossible to break without the key. A bad guy can simply try all possible keys until one works.
The security of a cryptographic scheme depends on how much work it is for the bad guy to break it.
If the best possible scheme will take 10 million years to break using all of the computers in the
world, then it can be considered reasonably secure.

Going back to the combination lock example, a typical combination might consist of three
numbers, each a number between 1 and 40. Let’s say it takes 10 seconds to dial in a combination.
That’s reasonably convenient for the good guy. How much work is it for the bad guy? There are 403

possible combinations, which is 64000. At 10 seconds per try, it would take a week to try all com-
binations, though on average it would only take half that long (even though the right number is
always the last one you try!).

Often a scheme can be made more secure by making the key longer. In the combination lock
analogy, making the key longer would consist of requiring four numbers to be dialed in. This would
make a little more work for the good guy. It might now take 13 seconds to dial in the combination.
But the bad guy has 40 times as many combinations to try, at 13 seconds each, so it would take a
year to try all combinations. (And if it took that long, he might want to stop to eat or sleep).

1. We’re using the terms good guys for the cryptographers, and bad guys for the cryptanalysts. This is a convenient short-
hand and not a moral judgment—in any given situation, which side you consider good or bad depends on your point of view.

2.1.2 WHAT IS CRYPTOGRAPHY? 41

With cryptography, computers can be used to exhaustively try keys. Computers are a lot
faster than people, and they don’t get tired, so thousands or millions of keys can be tried per second.
Also, lots of keys can be tried in parallel if you have multiple computers, so time can be saved by
spending money on more computers.

Sometimes a cryptographic algorithm has a variable-length key. It can be made more secure
by increasing the length of the key. Increasing the length of the key by one bit makes the good guy’s
job just a little bit harder, but makes the bad guy’s job up to twice as hard (because the number of
possible keys doubles). Some cryptographic algorithms have a fixed-length key, but a similar algo-
rithm with a longer key can be devised if necessary. If computers get 1000 times faster, so that the
bad guy’s job becomes reasonably practical, making the key 10 bits longer will make the bad guy’s
job as hard as it was before the advance in computer speed. However, it will be much easier for the
good guys (because their computer speed increase far outweighs the increment in key length). So
the faster computers get, the better life gets for the good guys.

Keep in mind that breaking the cryptographic scheme is often only one way of getting what
you want. For instance, a bolt cutter works no matter how many digits are in the combination.

You can get further with a kind word and a gun than you can with a kind
word alone. —Willy Sutton, bank robber

2.1.2 To Publish or Not to Publish

Some people believe that keeping a cryptographic algorithm as secret as possible will
enhance its security. Others argue that publishing the algorithm, so that it is widely known, will
enhance its security. On the one hand, it would seem that keeping the algorithm secret must be
more secure—it makes for more work for the cryptanalyst to try to figure out what the algorithm is.

The argument for publishing the algorithm is that the bad guys will probably find out about it
eventually anyway, so it’s better to tell a lot of nonmalicious people about the algorithm so that in
case there are weaknesses, a good guy will discover them rather than a bad guy. A good guy who
discovers a weakness will warn people that the system has a weakness. Publication provides an
enormous amount of free consulting from the academic community as cryptanalysts look for weak-
nesses so they can publish papers about them. A bad guy who discovers a weakness will exploit it
for doing bad-guy things like embezzling money or stealing trade secrets.

It is difficult to keep the algorithm secret because if an algorithm is to be widely used, it is
highly likely that determined attackers will manage to learn the algorithm by reverse engineering
whatever implementation is distributed, or just because the more people who know something the
more likely it is for the information to leak to the wrong places. In the past, “good” cryptosystems
were not economically feasible, so keeping the algorithms secret was needed extra protection. We
believe (we hope?) today’s algorithms are sufficiently secure that this is not necessary.

42 INTRODUCTION TO CRYPTOGRAPHY 2.1.3

Common practice today is for most commercial cryptosystems to be published and for mili-
tary cryptosystems to be kept secret. If a commercial algorithm is unpublished today, it’s probably
for trade secret reasons or because this makes it easier to get export approval rather than to enhance
its security. We suspect the military ciphers are unpublished mainly to keep good cryptographic
methods out of the hands of the enemy rather than to keep them from cryptanalyzing our codes.

2.1.3 Secret Codes

We use the terms secret code and cipher interchangeably to mean any method of encrypting
data. Some people draw a subtle distinction between these terms that we don’t find useful.

The earliest documented cipher is attributed to Julius Caesar. The way the Caesar cipher
would work if the message were in English is as follows. Substitute for each letter of the message,
the letter which is 3 letters later in the alphabet (and wrap around to A from Z). Thus an A would
become a D, and so forth. For instance, DOZEN would become GRCHQ. Once you figure out
what’s going on, it is very easy to read messages encrypted this way (unless, of course, the original
message was in Greek).

A slight enhancement to the Caesar cipher was distributed as a premium with Ovaltine in the
1940s as Captain Midnight Secret Decoder rings. (Were this done today, Ovaltine would probably
be in violation of export controls for distributing cryptographic hardware!) The variant is to pick a
secret number n between 1 and 25, instead of always using 3. Substitute for each letter of the mes-
sage, the letter which is n higher (and wrap around to A from Z of course). Thus if the secret num-
ber was 1, an A would become a B, and so forth. For instance HAL would become IBM. If the
secret number was 25, then IBM would become HAL. Regardless of the value of n, since there are
only 26 possible ns to try, it is still very easy to break this cipher if you know it’s being used and
you can recognize a message once it’s decrypted.

The next type of cryptographic system developed is known as a monoalphabetic cipher,
which consists of an arbitrary mapping of one letter to another letter. There are 26! possible pair-
ings of letters, which is approximately 4×1026. [Remember, n!, which reads “n factorial”, means
n(n−1)(n−2)⋅⋅⋅1.] This might seem secure, because to try all possibilities, if it took 1 microsecond to
try each one, would take about 10 trillion years. However, by statistical analysis of language
(knowing that certain letters and letter combinations are more common than others), it turns out to
be fairly easy to break. For instance, many daily newspapers have a daily cryptogram, which is a
monoalphabetic cipher, and can be broken by people who enjoy that sort of thing during their sub-
way ride to work. An example is

Cf lqr’xs xsnyctm n eqxxqgsy iqul qf wdcp eqqh, erl lqrx qgt iqul!

2.2 BREAKING AN ENCRYPTION SCHEME 43

Computers have made much more complex cryptographic schemes both necessary and possi-
ble. Necessary because computers can try keys at a rate that would exhaust an army of clerks; and
possible because computers can execute the complex algorithms quickly and without errors.

2.2 BREAKING AN ENCRYPTION SCHEME

What do we mean when we speak of a bad guy Fred breaking an encryption scheme? The
three basic attacks are known as ciphertext only, known plaintext, and chosen plaintext.

2.2.1 Ciphertext Only

In a ciphertext only attack, Fred has seen (and presumably stored) some ciphertext that he can
analyze at leisure. Typically it is not difficult for a bad guy to obtain ciphertext. (If a bad guy can’t
access the encrypted data, then there would have been no need to encrypt the data in the first
place!)

How can Fred figure out the plaintext if all he can see is the ciphertext? One possible strategy
is to search through all the keys. Fred tries the decrypt operation with each key in turn. It is essen-
tial for this attack that Fred be able to recognize when he has succeeded. For instance, if the mes-
sage was English text, then it is highly unlikely that a decryption operation with an incorrect key
could produce something that looked like intelligible text. Because it is important for Fred to be
able to differentiate plaintext from gibberish, this attack is sometimes known as a recognizable
plaintext attack.

It is also essential that Fred have enough ciphertext. For instance, using the example of a
monoalphabetic cipher, if the only ciphertext available to Fred were XYZ, then there is not enough
information. There are many possible letter substitutions that would lead to a legal three-letter
English word. There is no way for Fred to know whether the plaintext corresponding to XYZ is
THE or CAT or HAT. As a matter of fact, in the following sentence, any of the words could be the
plaintext for XYZ:

The hot cat was sad but you may now sit and use her big red pen.

[Don’t worry—we’ve found a lovely sanatorium for the coauthor who wrote that.
—the other coauthors]

Often it isn’t necessary to search through a lot of keys. For instance, the authentication
scheme Kerberos (see §10.4 Logging Into the Network) assigns to user Alice a DES key derived
from Alice’s password according to a straightforward, published algorithm. If Alice chooses her

44 INTRODUCTION TO CRYPTOGRAPHY 2.2.2

password unwisely (say a word in the dictionary), then Fred does not need to search through all 256

possible DES keys—instead he only needs to try the derived keys of the 10000 or so common
English words.

A cryptographic algorithm has to be secure against a ciphertext only attack because of the
accessibility of the ciphertext to cryptanalysts. But in many cases cryptanalysts can obtain addi-
tional information, so it is important to design cryptographic systems to withstand the next two
attacks as well.

2.2.2 Known Plaintext

Sometimes life is easier for the attacker. Suppose Fred has somehow obtained some
〈plaintext, ciphertext〉 pairs. How might he have obtained these? One possibility is that secret data
might not remain secret forever. For instance, the data might consist of specifying the next city to
be attacked. Once the attack occurs, the plaintext to the previous day’s ciphertext is now known.

With a monoalphabetic cipher, a small amount of known plaintext would be a bonanza. From
it, the attacker would learn the mappings of a substantial fraction of the most common letters (every
letter that was used in the plaintext Fred obtained). Some cryptographic schemes might be good
enough to be secure against ciphertext only attacks but not good enough against known plaintext
attacks. In these cases, it becomes important to design the systems that use such a cryptographic
algorithm to minimize the possibility that a bad guy will ever be able to obtain 〈plaintext, cipher-
text〉 pairs.

2.2.3 Chosen Plaintext

On rare occasions, life may be easier still for the attacker. In a “chosen plaintext” attack, Fred
can choose any plaintext he wants, and get the system to tell him what the corresponding ciphertext
is. How could such a thing be possible?

Suppose the telegraph company offered a service in which they encrypt and transmit mes-
sages for you. Suppose Fred had eavesdropped on Alice’s encrypted message. Now he’d like to
break the telegraph company’s encryption scheme so that he can decrypt Alice’s message.

He can obtain the corresponding ciphertext to any message he chooses by paying the tele-
graph company to send the message for him, encrypted. For instance, if Fred knew they were using
a monoalphabetic cipher, he might send the message

The quick brown fox jumps over the lazy dog.

knowing that he would thereby get all the letters of the alphabet encrypted and then be able to
decrypt with certainty any encrypted message.

2.3 TYPES OF CRYPTOGRAPHIC FUNCTIONS 45

It is possible that a cryptosystem secure against ciphertext only and known plaintext attacks
might still be susceptible to chosen plaintext attacks. For instance, if Fred knows that Alice’s mes-
sage is either Surrender or Fight on, then no matter how wonderful an encryption scheme the tele-
graph company is using, all he has to do is send the two messages and see which one looks like the
encrypted data he saw when Alice’s message was transmitted.

A cryptosystem should resist all three sorts of attacks. That way its users don’t need to worry
about whether there are any opportunities for attackers to know or choose plaintext. Like wearing
both a belt and suspenders, many systems that use cryptographic algorithms will also go out of their
way to prevent any chance of chosen plaintext attacks.

2.3 TYPES OF CRYPTOGRAPHIC FUNCTIONS

There are three kinds of cryptographic functions: hash functions, secret key functions, and
public key functions. We will describe what each kind is, and what it is useful for. Public key cryp-
tography involves the use of two keys. Secret key cryptography involves the use of one key. Hash
functions involve the use of zero keys! Try to imagine what that could possibly mean, and what use
it could possibly have—an algorithm everyone knows with no secret key, and yet it has uses in
security.

Since secret key cryptography is probably the most intuitive, we’ll describe that first.

2.4 SECRET KEY CRYPTOGRAPHY

Secret key cryptography involves the use of a single key. Given a message (called plaintext)
and the key, encryption produces unintelligible data (called an IRS Publication—no! no! that was
just a finger slip, we meant to say “ciphertext”), which is about the same length as the plaintext
was. Decryption is the reverse of encryption, and uses the same key as encryption.

ciphertextplaintext
encryption

ciphertext plaintextdecryption

key

46 INTRODUCTION TO CRYPTOGRAPHY 2.4.1

Secret key cryptography is sometimes referred to as conventional cryptography or sym-
metric cryptography. The Captain Midnight code and the monoalphabetic cipher are both exam-
ples of secret key algorithms, though both are easy to break. In this chapter we describe the
functionality of cryptographic algorithms, but not the details of particular algorithms. In Chapter 3
Secret Key Cryptography we describe the details of two secret key cryptographic algorithms (DES
and IDEA) in current use.

2.4.1 Security Uses of Secret Key Cryptography

The next few sections describe the types of things one might do with secret key cryptography.

2.4.2 Transmitting Over an Insecure Channel

It is often impossible to prevent eavesdropping when transmitting information. For instance,
a telephone conversation can be tapped, a letter can be intercepted, and a message transmitted on a
LAN can be received by unauthorized stations.

If you and I agree on a shared secret (a key), then by using secret key cryptography we can
send messages to one another on a medium that can be tapped, without worrying about eavesdrop-
pers. All we need to do is for the sender to encrypt the messages and the receiver to decrypt them
using the shared secret. An eavesdropper will only see unintelligible data.

This is the classic use of cryptography.

2.4.3 Secure Storage on Insecure Media

If I have information I want to preserve but which I want to assure no one else can look at, I
have to be able to store the media where I am sure no one can get it. Between clever thieves and
court orders, there are very few places that are truly secure, and none of these is convenient. If I
invent a key and encrypt the information using the key, I can store it anywhere and it is safe so long
as I can remember the key. Of course, forgetting the key makes the data irrevocably lost, so this
must be used with great care.

2.4.4 Authentication

In spy movies, when two agents who don’t know each other must rendezvous, they are each
given a password or pass phrase that they can use to recognize one another. This has the problem

2.4.5 SECRET KEY CRYPTOGRAPHY 47

that anyone overhearing their conversation or initiating one falsely can gain information useful for
replaying later and impersonating the person to whom they are talking.

The term strong authentication means that someone can prove knowledge of a secret with-
out revealing it. Strong authentication is possible with cryptography. Strong authentication is par-
ticularly useful when two computers are trying to communicate over an insecure network (since
few people can execute cryptographic algorithms in their heads). Suppose Alice and Bob share a
key KAB and they want to verify they are speaking to each other. They each pick a random number,
which is known as a challenge. Alice picks rA. Bob picks rB. The value x encrypted with the key
KAB is known as the response to the challenge x.

If someone, say Fred, were impersonating Alice, he could get Bob to encrypt a value for him
(though Fred wouldn’t be able to tell if the person he was talking to was really Bob), but this infor-
mation would not be useful later in impersonating Bob to the real Alice because the real Alice
would pick a different challenge. If Alice and Bob complete this exchange, they have each proven
to the other than they know KAB without revealing it to an impostor or an eavesdropper. Note that
in this particular protocol, there is the opportunity for Fred to obtain some 〈chosen plaintext,
ciphertext〉 pairs, since he can claim to be Bob and ask Alice to encrypt a challenge for him. For this
reason, it is essential that challenges be chosen from a large enough space, say 264 values, so that
there is no significant chance of using the same one twice.

That is the general idea of a cryptographic authentication algorithm, though this particular
algorithm has a subtle problem that would prevent it from being useful in most computer-to-com-
puter cases. (We would have preferred not bringing that up, but felt we needed to say that so as not
to alarm people who already know this stuff and who would realize the protocol was not secure.
Details on fixing this authentication protocol are discussed in Chapter 9 Security Handshake Pit-
falls.)

2.4.5 Integrity Check

A secret key scheme can be used to generate a fixed-length cryptographic checksum associ-
ated with a message. This is a rather nonintuitive use of secret key technology.

What is a checksum? An ordinary (noncryptographic) checksum protects against accidental
corruption of a message. The original derivation of the term checksum comes from the operation of

Alice Bob
rA

rA encrypted with KAB
rB

rB encrypted with KAB

48 INTRODUCTION TO CRYPTOGRAPHY 2.5

breaking a message into fixed-length blocks (for instance, 32-bit words) and adding them up. The
sum is sent along with the message. The receiver similarly breaks up the message, repeats the addi-
tion, and checks the sum. If the message had been garbled en route, the sum will not match the sum
sent and the message is rejected, unless, of course, there were two or more errors in the transmis-
sion that canceled one another. It turns out this is not terribly unlikely, given that if flaky hardware
turns a bit off somewhere, it is likely to turn a corresponding bit on somewhere else. To protect
against such “regular” flaws in hardware, more complex checksums called CRCs were devised. But
these still only protect against faulty hardware and not an intelligent attacker. Since CRC algo-
rithms are published, an attacker who wanted to change a message could do so, compute the CRC
on the new message, and send that along.

To provide protection against malicious changes to a message, a secret checksum algorithm is
required, such that an attacker not knowing the algorithm can’t compute the right checksum for the
message to be accepted as authentic. As with encryption algorithms, it’s better to have a common
(known) algorithm and a secret key. This is what a cryptographic checksum does. Given a key and
a message, the algorithm produces a fixed-length message integrity code (MIC) that can be sent
with the message.

If anyone were to modify the message, and they didn’t know the key, they would have to
guess a MIC and the chance of getting it right depends on the length. A typical MIC is at least 48
bits long, so the chance of getting away with a forged message is only one in 280 trillion (or about
the chance of going to Las Vegas with a dime and letting it ride on red at the roulette table until you
have enough to pay off the U.S. national debt).

Such message integrity codes have been in use to protect the integrity of large interbank elec-
tronic funds transfers for quite some time. The messages are not kept secret from an eavesdropper,
but their integrity is ensured.

2.5 PUBLIC KEY CRYPTOGRAPHY

Public key cryptography is sometimes also referred to as asymmetric cryptography.
Public key cryptography is a relatively new field, invented in 1975 [DIFF76b] (at least that’s

the first published record—it is rumored that NSA or similar organizations may have discovered
this technology earlier). Unlike secret key cryptography, keys are not shared. Instead, each individ-
ual has two keys: a private key that need not be revealed to anyone, and a public key that is prefer-
ably known to the entire world.

Note that we call the private key a private key and not a secret key. This convention is an
attempt to make it clear in any context whether public key cryptography or secret key cryptography
is being used. There are people in this world whose sole purpose in life is to try to confuse people.

2.5 PUBLIC KEY CRYPTOGRAPHY 49

They will use the term secret key for the private key in public key cryptography, or use the term pri-
vate key for the secret key in secret key technology. One of the most important contributions we can
make to the field is to convince people to feel strongly about using the terminology correctly—the
term secret key refers only to the single secret number used in secret key cryptography. The term
private key MUST be used when referring to the key in public key cryptography that must not be
made public. (Yes, when we speak we sometimes accidentally say the wrong thing, but at least we
feel guilty about it.)

There is something unfortunate about the terminology public and private. It is that both
words begin with p. We will sometimes want a single letter to refer to one of the keys. The letter p
won’t do. We will use the letter e to refer to the public key, since the public key is used when
encrypting a message. We’ll use the letter d to refer to the private key, because the private key is
used to decrypt a message. Encryption and decryption are two mathematical functions that are
inverses of each other.

There is an additional thing one can do with public key technology, which is to generate a
digital signature on a message. A digital signature is a number associated with a message, like a

checksum or the MIC (message integrity code) described in §2.4.5 Integrity Check. However,
unlike a checksum, which can be generated by anyone, a digital signature can only be generated by
someone knowing the private key. A public key signature differs from a secret key MIC because
verification of a MIC requires knowledge of the same secret as was used to create it. Therefore any-

ciphertextplaintext
encryption

public key

ciphertext plaintextdecryption

private key

signed messageplaintext
signing

private key

signed message plaintextverification

public key

50 INTRODUCTION TO CRYPTOGRAPHY 2.5.1

one who can verify a MIC can also generate one, and so be able to substitute a different message
and corresponding MIC. In contrast, verification of the signature only requires knowledge of the
public key. So Alice can sign a message by generating a signature only she can generate, and other
people can verify that it is Alice’s signature, but cannot forge her signature. This is called a signa-
ture because it shares with handwritten signatures the property that it is possible to be able to recog-
nize a signature as authentic without being able to forge it.

2.5.1 Security Uses of Public Key Cryptography

Public key cryptography can do anything secret key cryptography can do, but the known pub-
lic key cryptographic algorithms are orders of magnitude slower than the best known secret key
cryptographic algorithms and so are usually only used for things secret key cryptography can’t do.
Public key cryptography is very useful because network security based on public key technology
tends to be more secure and more easily configurable. Often it is mixed with secret key technology.
For example, public key cryptography might be used in the beginning of communication for
authentication and to establish a temporary shared secret key, then the secret key is used to encrypt
the remainder of the conversation using secret key technology.

For instance, suppose Alice wants to talk to Bob. She uses his public key to encrypt a secret
key, then uses that secret key to encrypt whatever else she wants to send him. Only Bob can decrypt
the secret key. He can then communicate using that secret key with whoever sent that message.
Notice that given this protocol, Bob does not know that it was Alice who sent the message. This
could be fixed by having Alice digitally sign the encrypted secret key using her private key.

Now we’ll describe the types of things one might do with public key cryptography.

2.5.2 Transmitting Over an Insecure Channel

Suppose Alice’s 〈public key, private key〉 pair is 〈eA, dA〉 . Suppose Bob’s key pair is 〈eB, dB〉 .
Assume Alice knows Bob’s public key, and Bob knows Alice’s public key. Actually, accurately
learning other people’s public keys is one of the biggest challenges in using public key cryptogra-
phy and will be discussed in detail in §7.7.2 Certification Authorities (CAs). But for now, don’t
worry about it.

Alice Bob
encrypt mA using eB decrypt to mA using dB

decrypt to mB using dA encrypt mB using eA

2.5.3 PUBLIC KEY CRYPTOGRAPHY 51

2.5.3 Secure Storage on Insecure Media

This is really the same as what one would do with secret key cryptography. You’d encrypt the
data with your public key. Then nobody can decrypt it except you, since decryption will require the
use of the private key. It has the advantage over encryption with secret key technology that you
don’t have to risk giving your private key to the machine that is going to encrypt the data for you.
As with secret key technology, if you lose your private key, the data is irretrievably lost. If you are
worried about that, you can encrypt an additional copy of the data under the public key of someone
you trust, like your lawyer.

2.5.4 Authentication

Authentication is an area in which public key technology potentially gives a real benefit.
With secret key cryptography, if Alice and Bob want to communicate, they have to share a secret. If
Bob wants to be able to prove his identity to lots of entities, then with secret key technology he will
need to remember lots of secret keys, one for each entity to which he would like to prove his iden-
tity. Possibly he could use the same shared secret with Alice as with Carol, but that has the disad-
vantage that then Carol and Alice could impersonate Bob to each other.

Public key technology is much more convenient. Bob only needs to remember a single secret,
his own private key. It is true that if Bob wants to be able to verify the identity of thousands of enti-
ties, then he will need to know thousands of public keys, but in general the entities verifying identi-
ties are computers which don’t mind remembering thousands of things, whereas the entities
proving their identities are often humans, which do mind remembering things.

Here’s an example of how Alice can use public key cryptography for verifying Bob’s identity
assuming Alice knows Bob’s public key. Alice chooses a random number r, encrypts it using Bob’s
public key eB, and sends the result to Bob. Bob proves he knows dB by decrypting the message and
sending r back to Alice.

Another advantage of public key authentication is that Alice does not need to keep any secret
information. For instance, Alice might be a computer system in which backup tapes are unen-
crypted and easily stolen. With secret key based authentication, if Carol stole a backup tape and
read the key that Alice shares with Bob, she could then trick Bob into thinking she was Alice. In
contrast, with public key based authentication, the only information on Alice’s backup tapes is pub-
lic key information, and that cannot be used to impersonate Bob.

Alice Bob
encrypt r using eB decrypt to r using dB

r

52 INTRODUCTION TO CRYPTOGRAPHY 2.5.5

In large-scale systems, like computer networks with thousands of users and services, authen-
tication is usually done with trusted intermediaries. As we’ll see in §7.7 Trusted Intermediaries,
public key based authentication using intermediaries has several important advantages over secret
key based authentication.

2.5.5 Digital Signatures

Forged in USA
engraved on a screwdriver claiming to be of brand Craftsman

It is often useful to prove that a message was generated by a particular individual, especially
if the individual is not necessarily around to be asked about authorship of the message. This is easy
with public key technology. Bob’s signature for a message m can only be generated by someone
with knowledge of Bob’s private key. And the signature depends on the contents of m. If m is mod-
ified in any way, the signature no longer matches. So digital signatures provide two important func-
tions. They prove who generated the information, and they prove that the information has not been
modified in any way by anyone since the message and matching signature were generated.

An important example of a use of a signature is in electronic mail to verify that a mail mes-
sage really did come from the claimed source.

Digital signatures offer an important advantage over secret key based cryptographic check-
sums—non-repudiation. Suppose Bob sells widgets and Alice routinely buys them. Alice and Bob
might agree that rather than placing orders through the mail with signed purchase orders, Alice will
send electronic mail messages to order widgets. To protect against someone forging orders and
causing Bob to manufacture more widgets than Alice actually needs, Alice will include a message
integrity code on her messages. This could be either a secret key based MIC or a public key based
signature. But suppose sometime after Alice places a big order, she changes her mind (the bottom
fell out of the widget market). Since there’s a big penalty for canceling an order, she doesn’t fess up
that she’s canceling, but instead denies that she ever placed the order. Bob sues. Bob knows Alice
really placed the order because it was cryptographically signed. But if it was signed with a secret
key algorithm, he can’t prove it to anyone! Since he knows the same secret key that Alice used to
sign the order, he could have forged the signature on the message himself and he can’t prove to the
judge that he didn’t! If it was a public key signature on the other hand, he can show the signed mes-
sage to the judge and the judge can verify that it was signed with Alice’s key. Alice can still claim
of course that someone must have stolen and misused her key (it might even be true!), but the con-
tract between Alice and Bob could reasonably hold her responsible for damages caused by her
inadequately protecting her key. Unlike secret key cryptography, where the keys are shared, you
can always tell who’s responsible for a signature generated with a private key.

2.6 HASH ALGORITHMS 53

Public key algorithms are discussed further in Chapter 5 Public Key Algorithms.

2.6 HASH ALGORITHMS

Hash algorithms are also known as message digests or one-way transformations.
A cryptographic hash function is a mathematical transformation that takes a message of arbi-

trary length (transformed into a string of bits) and computes from it a fixed-length (short) number.
We’ll call the hash of a message m, h(m). It has the following properties:

• For any message m, it is relatively easy to compute h(m). This just means that in order to be
practical it can’t take a lot of processing time to compute the hash.

• Given h(m), there is no way to find an m that hashes to h(m) in a way that is substantially eas-
ier than going through all possible values of m and computing h(m) for each one.

• Even though it’s obvious that many different values of m will be transformed to the same
value h(m) (because there are many more possible values of m), it is computationally infeasi-
ble to find two values that hash to the same thing.

An example of the sort of function that might work is taking the message m, treating it as a
number, adding some large constant, squaring it, and taking the middle n digits as the hash. You can
see that while this would not be difficult to compute, it’s not obvious how you could find a message
that would produce a particular hash, or how one might find two messages with the same hash. It
turns out this is not a particularly good message digest function—we’ll give examples of secure
message digest functions in Chapter 4 Hashes and Message Digests. But the basic idea of a mes-
sage digest function is that the input is mangled so badly the process cannot be reversed.

2.6.1 Password Hashing

When a user types a password, the system has to be able to determine whether the user got it
right. If the system stores the passwords unencrypted, then anyone with access to the system stor-
age or backup tapes can steal the passwords. Luckily, it is not necessary for the system to know a
password in order to verify its correctness. (A proper password is like pornography. You can’t tell
what it is, but you know it when you see it.)

Instead of storing the password, the system can store a hash of the password. When a pass-
word is supplied, it computes the password’s hash and compares it with the stored value. If they
match, the password is deemed correct. If the hashed password file is obtained by an attacker, it is

54 INTRODUCTION TO CRYPTOGRAPHY 2.6.2

not immediately useful because the passwords can’t be derived from the hashes. Historically, some
systems made the password file publicly readable, an expression of confidence in the security of the
hash. Even if there are no cryptographic flaws in the hash, it is possible to guess passwords and
hash them to see if they match. If a user is careless and chooses a password that is guessable (say, a
word that would appear in a 50000-word dictionary or book of common names), an exhaustive
search would “crack” the password even if the encryption were sound. For this reason, many sys-
tems hide the hashed password list (and those that don’t should).

2.6.2 Message Integrity

Cryptographic hash functions can be used to generate a MIC to protect the integrity of mes-
sages transmitted over insecure media in much the same way as secret key cryptography.

If we merely sent the message and used the hash of the message as a MIC, this would not be
secure, since the hash function is well-known. The bad guy can modify the message and compute a
new hash for the new message, and transmit that.

However, if Alice and Bob have agreed on a password, Alice can use a hash to generate a
MIC for a message to Bob by taking the message, concatenating the password, and computing the
hash of message|password. Alice then sends the hash and the message (without the password) to
Bob. Bob concatenates the password to the received message and computes the hash of the result. If
that matches the received hash, Bob can have confidence the message was sent by someone know-
ing the password. [Note: there are some cryptographic subtleties to making this actually secure; see
§4.2.2 Computing a MIC with a Hash].

2.6.3 Message Fingerprint

If you want to know whether some large data structure (e.g. a program) has been modified
from one day to the next, you could keep a copy of the data on some tamper-proof backing store
and periodically compare it to the active version. With a hash function, you can save storage: you
simply save the message digest of the data on the tamper-proof backing store (which because the

message

password

hash

hash

= ?

password

BobAlice

2.6.4 HOMEWORK 55

hash is small could be a piece of paper in a filing cabinet). If the message digest hasn’t changed,
you can be confident none of the data has.

A note to would-be users—if it hasn’t already occurred to you, it has occurred to the bad
guys—the program that computes the hash must also be independently protected for this to be
secure. Otherwise the bad guys can change the file but also change the hashing program to report
the checksum as though the file were unchanged!

2.6.4 Downline Load Security

It is common practice to have special-purpose devices connected to a network, like routers or
printers, that do not have the nonvolatile memory to store the programs they normally run. Instead,
they keep a bootstrap program smart enough to get a program from the network and run it. This
scheme is called downline load.

Suppose you want to downline load a program and make sure it hasn’t been corrupted
(whether intentionally or not). If you know the proper hash of the program, you can compute the
hash of the loaded program and make sure it has the proper value before running the program.

2.6.5 Digital Signature Efficiency

The best-known public key algorithms are sufficiently processor-intensive that it is desirable
to compute a message digest of the message and sign that, rather than to sign the message directly.
The message digest algorithms are much less processor-intensive, and the message digest is much
shorter than the message.

2.7 HOMEWORK

1. Random J. Programmer discovers a much faster method of generating a 64-bit signature for a
message using secret key technology. The idea is to simply encrypt the first 64 bits of the
message, and use that as the signature. What’s wrong with this idea?

2. What’s wrong with adding up the words of a message and using the result as a hash of the
message?

3. Random J. Protocol-Designer has been told to design a scheme to prevent messages from
being modified by an intruder. Random J. decides to append to each message a hash of that

56 INTRODUCTION TO CRYPTOGRAPHY 2.7

message. Why doesn’t this solve the problem? (We know of a protocol that uses this tech-
nique in an attempt to gain security.)

