
Model answer
 of AS-4159

Operating System B.tech fifth Semester
Information technology

Q.1 Objective type
Q.no Answer

I d(321)
Ii C(Execute more jobs in the same time)

Iii Three/three multiple
Iv Max[I,j]-Allocation[I,j]
V process
Vi C(both a&b)
Vii platter
viii sector
ix C(An illusion of extremely large main memory)
x C(system call)

Unit 1
Ans 3: Allocation Methods

An allocation method refers to how disk blocks are allocated for files:
Contiguous allocation
Linked allocation
Indexed allocation

Contiguous Allocation
Each file occupies a set of contiguous blocks on the disk
Simple – only starting location (block #) and length (number of blocks) are required
Random access
Wasteful of space (dynamic storage-allocation problem)
Files cannot grow

Linked Allocation

Each file is a linked list of disk blocks: blocks may be scattered anywhere on the disk.
Simple – need only starting address
Free-space management system – no waste of space
No random access

 Mapping

Indexed Allocation
Brings all pointers together into the index block
Logical view.

Ans 4.

In the context of computing and operating systems, one might encounter many (confusing) terms
which may look similar but eventually refer to different concepts. In this post, I will try to
summarize the basic differences between various operating systems types and explain why and
how they are not the same. The information provided is not new and can be found all over the
place on the internet and actually that may add to the confusion. I hope that having all (not
exactly) the terms clarified in one place would make it easy to remember. There could be many
reasons why there are different operating systems types but it is mainly because each system type
is designed from the ground up to meet certain design goals. On the other hand, the underlying
hardware architecture influences the way systems are designed and implemented.

In a typical computing system, probably there are (many) concurrent application processes
competing for (few) resources, for example the CPU. An operating system must handle resource
allocation with due care. There is a popular operating systems term for such allocation known as
scheduling. Depending on operating system’s type, the goals of scheduling processes can be
different. Regardless of system type there should be some kind of fairness when allocating
resources, stated policy must be enforced and the overall system usage should be balanced. As
we will see later, the goals that need to be achieved characterize the operating system type. Let
us now talk about some operating systems types and terminology…

Multiprogramming

One time, I was at the post office standing in line waiting my turn to be served. My turn came
but I was not fully prepared because my mail was not prepackaged. They gave me an empty box
to do that on the side. I started packaging my mail while another customer is occupying my spot.
It does not make sense to block the whole line while packaging my mail however it is a better
idea to allow other customers proceed and get served in the mean time. I think this example (to
some extent) is very similar in concept to multiprogramming model where programs are like
customers and CPU is like the post office assistant. Assuming one assistant (single processor
system) then only one customer can be served at a time. While a customer is being served he or
she continues until he or she finishes or waits on the side. As long as the assistant is helping a
customer he does not switch to serve other customers.

In a multiprogramming system there are one or more programs (processes or customers) resident
in computer’s main memory ready to execute. Only one program at a time gets the CPU for
execution while the others are waiting their turn. The whole idea of having a multi-programmed
system is to optimize system utilization (more specifically CPU time). The currently executing
program gets interrupted by the operating system between tasks (for example waiting for IO,
recall the mail packaging example) and transfer control to another program in line (another
customer). Running program keeps executing until it voluntarily gives the CPU back or when it
blocks for IO. As you can see, the design goal is very clear: processes waiting for IO should not
block other processes which in turn wastes CPU time. The idea is to keep the CPU busy as long
as there are processes ready to execute.

Note that in order for such a system to function properly, the operating system must be able to
load multiple programs into separate partitions of the main memory and provide the required
protection because the chance of one process being modified by another process is likely to
happen. Other problems that need to be addressed when having multiple programs in memory is
fragmentation as programs enter or leave (swapping) the main memory. Another issue that needs
to be handled as well is that large programs may not fit at once in memory which can be solved
by using virtual memory. In modern operating systems programs are split into equally sized
chunks called pages but this is beyond the scope of this article.

In summary, Multiprogramming system allows multiple processes to reside in main memory
where only one program is running. The running program keeps executing until it blocks for IO
and the next program in line takes the turn for execution. The goal is to optimize CPU utilization
by reducing CPU idle time. Finally, please note that the term multiprogramming is an old term
because in modern operating systems the whole program is not loaded completely into the main
memory.

Multiprocessing

Multiprocessing sometimes refers to executing multiple processes (programs) at the same
time. This is confusing because we already have multiprogramming (defined earlier) and
multitasking (will talk about it later) that are better to describe multiple processes running at the
same time. Using the right terminology keeps less chance for confusion so what is
multiprocessing then?

Multiprocessing refers actually to the CPU units rather than running processes. If the underlying
hardware provides more than one processor then that is multiprocessing. There are many
variations on the basic scheme for example having multiple cores on one die or multiple dies in
one package or multiple packages in one system. In summary, multiprocessing refers to the
underlying hardware (multiple CPUs, Cores) while multiprogramming refers to the software
(multiple programs, processes). Note that a system can be both multi-programmed by having
multiple programs running at the same time and multiprocessing by having more than one
physical processor.

UNIT II
Ans 5: Process Control Block (PCB)
Information associated with each process

Process state
Program counter
CPU registers

CPU scheduling information
Memory-management information
Accounting information
I/O status information

Schedulers

Long-term scheduler (or job scheduler) – selects which processes should be brought into
the ready queue
Short-term scheduler (or CPU scheduler) – selects which process should be executed next
and allocates CPU

ANS 6:
• n processes competing to use some shared data.
• No assumptions may be made about speeds or the number of CPUs.
• Each process has a code segment, called Critical Section (CS), in which the shared data is

accessed.
• Problem – ensure that when one process is executing in its CS, no other process

is allowed to execute in its CS.
• When a process executes code that manipulates shared data (or resource), we say that the

process is in it’s Critical Section (for that shared data).
• The execution of critical sections must be mutually exclusive: at any time, only one

process is allowed to execute in its critical section (even with multiple processors).
• So each process must first request permission to enter its critical section.
• There are 3 requirements that must stand for a correct solution:

• Mutual Exclusion
• Progress
• Bounded Waiting

• We can check on all three requirements in each proposed solution, even though the
non-existence of each one of them is enough for an incorrect solution.

1.Mutual Exclusion – If process Pi is executing in its critical section, then no other
processes can be executing in their critical sections.
• Implications:
• Critical sections better be focused and short.
• Better not get into an infinite loop in there.
• If a process somehow halts/waits in its critical section, it must not interfere with other

processes
2.Progress – If no process is executing in its critical section and there exist some processes that
wish to enter their critical section, then the selection of the process that will enter the critical
section next cannot be postponed indefinitely:

• If only one process wants to enter, it should be able to.
• If two or more want to enter, one of them should succeed.

3Bounded Waiting – A bound must exist on the number of times that other processes are
allowed to enter their critical sections after a process has made a request to enter its critical
section and before that request is granted.

• Assume that each process executes at a nonzero speed.
• No assumption concerning relative speed of the n

processes.
Unit III

Ans7:

Buffering

 A buffer is a memory area that stores data while they are transferred between two devices or

between a device and an application. Buffering is done for three reasons

a. To cope with a speed mismatch between the producer and consumer of a data stream

b. To adapt between devices that have different data transfer sizes

c. To support copy semantics for application I/O

Caching

A cache is a region of fast memory that holds copies of data. Access to the cached copy is more

efficient than access to the original. Caching and buffering are distinct functions, but

sometimes a region of memory can be used for both purposes.

Ans: 8
S.no AWT ATAT
FCFS 3.75 7.5
SGF 3.50 7.25

Unit IV
Ans9

Deadlock Conditions

1. mutual exclusion
The resources involved must be unshareable; otherwise, the processes would not be
prevented from using the resource when necessary.

2. hold and wait or partial allocation
The processes must hold the resources they have already been allocated while waiting for
other (requested) resources. If the process had to release its resources when a new
resource or resources were requested, deadlock could not occur because the process
would not prevent others from using resources that it controlled.

3. no pre-emption
The processes must not have resources taken away while that resource is being used.
Otherwise, deadlock could not occur since the operating system could simply take
enough resources from running processes to enable any process to finish.

4. resource waiting or circular wait
A circular chain of processes, with each process holding resources which are currently
being requested by the next process in the chain, cannot exist. If it does, the cycle
theorem (which states that "a cycle in the resource graph is necessary for deadlock to
occur") indicated that deadlock could occur.

Banker's Algorithm

• For resource categories that contain more than one instance the resource-allocation graph
method does not work, and more complex (and less efficient) methods must be chosen.

• The Banker's Algorithm gets its name because it is a method that bankers could use to
assure that when they lend out resources they will still be able to satisfy all their clients.

(A banker won't loan out a little money to start building a house unless they are assured
that they will later be able to loan out the rest of the money to finish the house.)

• When a process starts up, it must state in advance the maximum allocation of resources it
may request, up to the amount available on the system.

• When a request is made, the scheduler determines whether granting the request would
leave the system in a safe state. If not, then the process must wait until the request can be
granted safely.

• The banker's algorithm relies on several key data structures: (where n is the number of
processes and m is the number of resource categories.)

o Available[m] indicates how many resources are currently available of each type.
o Max[n][m] indicates the maximum demand of each process of each resource.
o Allocation[n][m] indicates the number of each resource category allocated to

each process.
o Need[n][m] indicates the remaining resources needed of each type for each

process. (Note that Need[i][j] = Max[i][j] - Allocation[i][j] for all i, j.)
• For simplification of discussions, we make the following notations / observations:

o One row of the Need vector, Need[i], can be treated as a vector corresponding to
the needs of process i, and similarly for Allocation and Max.

o A vector X is considered to be <= a vector Y if X[i] <= Y[i] for all i.

Safety Algorithm

• In order to apply the Banker's algorithm, we first need an algorithm for determining
whether or not a particular state is safe.

• This algorithm determines if the current state of a system is safe, according to the
following steps:

1. Let Work and Finish be vectors of length m and n respectively.
 Work is a working copy of the available resources, which will be modified

during the analysis.
 Finish is a vector of booleans indicating whether a particular process can

finish. (or has finished so far in the analysis.)
 Initialize Work to Available, and Finish to false for all elements.

2. Find an i such that both (A) Finish[i] == false, and (B) Need[i] < Work. This
process has not finished, but could with the given available working set. If no
such i exists, go to step 4.

3. Set Work = Work + Allocation[i], and set Finish[i] to true. This corresponds to
process i finishing up and releasing its resources back into the work pool. Then
loop back to step 2.

4. If finish[i] == true for all i, then the state is a safe state, because a safe sequence
has been found.

• (JTB's Modification:
1. In step 1. instead of making Finish an array of booleans initialized to false, make

it an array of ints initialized to 0. Also initialize an int s = 0 as a step counter.
2. In step 2, look for Finish[i] == 0.
3. In step 3, set Finish[i] to ++s. S is counting the number of finished processes.
4. For step 4, the test can be either Finish[i] > 0 for all i, or s >= n. The benefit of

this method is that if a safe state exists, then Finish[] indicates one safe sequence
(of possibly many.))

Resource-Request Algorithm (The Bankers Algorithm)

• Now that we have a tool for determining if a particular state is safe or not, we are now
ready to look at the Banker's algorithm itself.

• This algorithm determines if a new request is safe, and grants it only if it is safe to do so.
• When a request is made (that does not exceed currently available resources), pretend it

has been granted, and then see if the resulting state is a safe one. If so, grant the request,
and if not, deny the request, as follows:

1. Let Request[n][m] indicate the number of resources of each type currently
requested by processes. If Request[i] > Need[i] for any process i, raise an error
condition.

2. If Request[i] > Available for any process i, then that process must wait for
resources to become available. Otherwise the process can continue to step 3.

3. Check to see if the request can be granted safely, by pretending it has been
granted and then seeing if the resulting state is safe. If so, grant the request, and if
not, then the process must wait until its request can be granted safely.The
procedure for granting a request (or pretending to for testing purposes) is:

 Available = Available - Request
 Allocation = Allocation + Request
 Need = Need - Request

Example

And now consider what happens if process P1 requests 1 instance of A and 2 instances of C. (
Request[1] = (1, 0, 2))

Unit V

Ans:11 the Page Fault. A page fault occurs when a program requests an address on a page that is
not in the current set of memory resident pages. What happens when a page fault occurs is that
the thread that experienced the page fault is put into a Wait state while the operating system finds
the specific page on disk and restores it to physical memory.

When a thread attempts to reference a nonresident memory page, a hardware interrupt occurs
that halts the executing program. The instruction that referenced the page fails and generates an
addressing exception that generates an interrupt. There is an Interrupt Service Routine that gains
control at this point and determines that the address is valid, but that the page is not
resident. The OS then locates a copy of the desired page on the page file, and copies the page
from disk into a free page in RAM. Once the copy has completed successfully, the OS allows
the program thread to continue on. One quick note here – if the program accesses an invalid
memory location due to a logic error an addressing exception similar to a page fault occurs. The
same hardware interrupt is raised. It is up to the Memory Manager’s Interrupt Service Routine
that gets control to distinguish between the two situations.

It is also important to distinguish between hard page faults and soft page faults. Hard page faults
occur when the page is not located in physical memory or a memory-mapped file created by the
process (the situation we discussed above). The performance of applications will suffer when
there is insufficient RAM and excessive hard page faults occur. It is imperative that hard page
faults are resolved in a timely fashion so that the process of resolving the fault does not
unnecessarily delay the program’s execution. On the other hand, a soft page fault occurs when
the page is resident elsewhere in memory. For example, the page may be in the working set of
another process. Soft page faults may also occur when the page is in a transitional state because
it has been removed from the working sets of the processes that were using it, or it is resident as
the result of a prefetch operation.

We also need to quickly discuss the role of the system file cache and cache faults. The system
file cache uses Virtual Memory Manager functions to manage application file data. The system
file cache maps open files into a portion of the system virtual address range and uses the process
working set memory management mechanisms to keep the most active portions of current files
resident in physical memory. Cache faults are a type of page fault that occur when a program
references a section of an open file that is not currently resident in physical memory. Cache
faults are resolved by reading the appropriate file data from disk, or in the case of a remotely
stored file – accessing it across the network. On many file servers, the system file cache is one
of the leading consumers of virtual and physical memory.

Finally, when investigating page fault issues, it is important to understand whether the page
faults are hard faults or soft faults. The page fault counters in Performance Monitor do not
distinguish between hard and soft faults, so you have to do a little bit of work to determine the
number of hard faults. To track paging, you should use the following counters: Memory\ Page
Faults /sec, Memory\ Cache Faults /sec and Memory\ Page Reads /sec. The first two counters
track the working sets and the file system cache. The Page Reads counter allows you to track
hard page faults. If you have a high rate of page faults combined with a high rate of page reads
(which also show up in the Disk counters) then you may have an issue where you have
insufficient RAM given the high rate of hard faults.
Ans: 12

• O
fi

• T
m

• T
• T

M

• A
ca

• W
th
to

• T
w
m

• S
d

• N
bu

Fragmen

• B
fr

• E
re
nu

• D
fr

• S
g

One of the sim
ixed-sized pa

Thus, the deg
multiple-parti

o When
into th

o When
This method
The method d
MVT); it is u

o The O
are oc

o Initial
block

o When
this pr

o If we
availa

At any given
an order the

When a proce
he set of hole
o form one la

This procedur
which concer
many solution

o First f
beginn
stop s

o Best f
list, un
hole.

o Worst
is sort
more

imulations h
ecreasing tim

Neither first f
ut first fit is

ntation

Both the first
ragmentation

External fragm
equest, but th
umber of sm

Depending on
ragmentation
tatistical ana
iven allo

mplest meth
artitions. Eac

gree of multi
ition method

n a partition i
he free partit
n the process
is no longer
described ne

used primaril
OS keeps a ta
ccupied.
lly, all memo
of available

n a process ar
rocess.
find one, we

able to satisfy
time, we ha
input queue

ess terminate
es. If the new
arger hole.
re is a partic
rns how to sa
ns to this pro
fit. Allocate
ning of the s
earching as

fit. Allocate
nless the list

t fit. Allocat
ted by size. T
useful than t

have shown t
me and stora
fit nor best fi
generally fa

-fit and best
n.
mentation ex
he available

mall holes.
n the total am
n may be a m
alysis of firs
ocated block

ods for alloc
ch partition
programmin

d,
is free, a pro
tion.
s terminates,

in use.
xt is a gener

ly in batch en
able indicatin

ory is availab
e memory, a
rrives and ne

e allocate on
fy future requ
ve a list of a

e according t
es, it release
w hole is adj

cular instanc
atisfy a requ
oblem.
the first hole

set of holes o
soon as we f
the smallest
t is ordered b

e the largest
This strategy
the smaller l
that both firs

age utilizatio
fit is clearly b
aster.

-fit strategie

xists when th
spaces are n

mount of me
minor or a m
t fit, for inst

ks, another

cating memo
may contain

ng is bound b

ocess is selec

the partition

ralization of
nvironments
ng which pa

ble for user
hole.
eeds memor

nly as much m
uests.
available blo
to a scheduli
s its block o
jacent to oth

e of the gene
uest of size

e that is big
or where the
find a free h
hole that is

by size. This

t hole. Again
y produces th
leftover hole
st fit and bes

on.
better than th

es for memor

here is enoug
not contiguo

emory storag
major problem
tance, reveal

blocks

ory is to divi
n exactly one
by the numb

cted from the

n becomes av

the fixed-pa
s. In the fixe
arts of memo

processes an

ry, we search

memory as i

ock sizes and
ing algorithm
of memory, w
her holes, the

eral dynamic
from a list

enough. Sea
 previous fir
ole that is la
big enough.

s strategy pro

n, we must se
he largest le
e from a best
st fit are bett

he other in te

ry allocation

gh total mem
us; storage i

ge and the av
m.
ls that, even
s will be lost

ide memory
e process.
ber of partitio

e input queu

vailable for

artition schem
d-partition s

ory are availa

nd is conside

h for a hole l

is needed, ke

d the input qu
m.
which is then
ese adjacent

c storage-all
of free hole

arching can s
rst-fit search
arge enough.
 We must se
oduces the sm

earch the ent
ftover hole,
t-fit approach
ter than wors

erms of stora

n suffer from

mory space t
is fragmente

verage proce

with some o
t to fragment

into several

ons. In this

ue and is load

another proc

me (called
scheme,
able and whi

ered one larg

large enough

eeping the re

ueue. The O

n placed back
holes are me

location prob
es. There are

start either a
h ended. We

earch the ent
mallest lefto

tire list, unle
which may b
h.
st fit in term

age utilizatio

m external

to satisfy a
d into a larg

ess size, exte

optimization
tation.

ded

cess.

ich

ge

h for

est

S

k in
erged

blem,

t the
can

tire
over

ess it
be

ms of

on,

ge

ernal

,

• That is, one-third of memory may be unusable! This property is known as the 50-percent
rule.

• Memory fragmentation can be internal as well as external.
o Consider a multiple-partition allocation scheme with a hole of 18,464 bytes.
o Suppose that the next process requests 18,462 bytes.
o If we allocate exactly the requested block, we are left with a hole of 2 bytes.
o The difference between these two numbers is internal fragmentation; memory that

is internal to a partition but is not being used.
• The general approach to avoiding this problem is to break the physical memory into

fixed-sized blocks and allocate memory in units based on block size.
• One solution to the problem of external fragmentation is compaction. The goal is to

shuffle the memory contents so as to place all free memory together in one large block.
• The simplest compaction algorithm is to move all processes toward one end of memory;

all holes move in the other direction, producing one large hole of available memory. This
scheme can be expensive.

• Another possible solution to the external-fragmentation problem is to permit the logical
address space of the processes to be non-contiguous, thus allowing a process to be
allocated physical memory wherever the latter is available.

• Two complementary techniques achieve this solution:
o paging
o segmentation

• These techniques can also be combined

Paging

• Paging is a memory-management scheme that permits the physical address space of a
process to be non-contiguous.

• Paging avoids the considerable problem of fitting memory chunks of varying sizes onto
the backing store.

• The backing store also has the fragmentation problems discussed in connection with main
memory, except that access is much slower, so compaction is impossible.

• Because of its advantages over earlier methods, paging in its various forms is commonly
used in most OSs.

• Traditionally, support for paging has been handled by hardware. However, recent designs
have implemented paging by closely integrating the hardware and OS, especially on 64-
bit microprocessors.

